

Wroflats - dokumentacja

O projekcie

Wprowadzenie

Poszukiwanie mieszkania na wynajem jest obecnie źródłem wielu frustacji.

Serwisy ogłoszeniowe są nieintuicyjne i wypełnione powtarzającymi się, niskiej jakości ofertami.

Jak znaleźć i wybrać właściwą ofertę, która będzie odpowiadać wszystkim przyszłym lokatorom?

Wroflats jest systemem, który rozwiązuje wiele najpopularniejszych problemów dotykających każdą osobę aktywnie poszukującą lokum do wynajęcia. Pozwala on w miły i przyjemny sposób przeszukiwać oferowane mieszkania oraz pokoje biorąc pod uwagę lokalizację, budżet oraz czas dojazdu komunikacją miejską do najważniejszych części miasta.

Główne zalety Wroflats

Wykrywanie oraz usuwanie zduplikowanych ogłoszeń

Popularnym zachowaniem jest regularne umieszczanie identycznych ofert na portalach ogłoszeniowych – wynajmujący stosują taką taktykę w celu poprawienia pozycjonowania własnych nieruchomości oraz dla możliwości zaprezentowania ich w kategorii „ostatnio dodane ogłoszenia”.

System automatycznie wykrywa oraz usuwa duplikaty, weryfikując poziom podobieństwa pomiędzy dostępnymi ofertami.

W praktyce oznacza to, że usunięcie ogłoszenia przez użytkownika ukrywa je na stałe – oferty ze wszystkich portali ogłoszeniowych są scalane do wspólnego formatu, uniemożliwiając powtórne wyświetlanie tych samych treści.

Wydajna praca w grupie

Wroflats wyposażony jest w system grup, które podnoszą komfort wspólnego poszukiwania idealnego lokum.

Grupy przechowują wszystkie ustawienia wyszukiwania (maksymalny budżet, typ nieruchomości, lokalizacja), udostępniając współdzielony interfejs pomiędzy wszystkich członków grupy.

Decyzja podjęta przez jedną osobę jest natychmiastowo widoczna przez pozostałych członków, co znacznie usprawnia proces decyzyjny.

Każdy użytkownik może być członkiem wielu grup, nawet jeżeli są one wyłącznie jednoosobowe, dzięki temu może równolegle wyszukiwać mieszkania w różnych cenach, w różnych lokalizacjach oraz z różnymi parametrami.

Dynamiczne ocenianie

Ogłoszenia są sortowane według końcowego wskaźnika (oceny końcowej), wyliczanego na podstawie predefiniowanych parametrów wyszukiwania każdej grupy. Każdy parametr może mieć przydzieloną dowolną wagę.

Użytkownik własnoręcznie dobiera parametry wyszukiwania. Dzięki temu ma możliwość znalezienia oferty, która:

- posiada najlepszy współczynnik ceny za metr kwadratowy

- udostępnia najszybsze połączenie komunikacją miejską do wybranej uczelni

- mieści się w podanym budżecie

- jest w preferowanej części (dzielnicy) miasta

- prezentuje się najlepiej (jakość zdjęć załączonych do ogłoszenia)

Interaktywna mapa nieruchomości

Wszystkie oferty są automatycznie umieszczane na interaktywnej mapie, która zawiera najistotniejsze informacje.

Decyzje podejmowane w grupie są natychmiastowo widoczne – mieszkania dodane do ulubionych są odpowiednio wyróżnione żółtym kolorem, mieszkania usunięte nie wyświetlają się wcale.

Co najważniejsze – do każdej oferty przyporządkowana jest cena, widoczna bezpośrednio na mapie.

Aby dowiedzieć się więcej informacji o konkretnej nieruchomości, wystarczy jedno kliknięcie.

Zaimplementowane klasy i modele

Użytkownicy

Użytkownik jest reprezentowany przez klasę User będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

username - nazwa użytkownika

full_name - imię, nazwisko

password - hasło hashowane przy pomocy funkcji SHA256

avatar - odnośnik do zdjęcia użytkownika

class User(db.Model):
 __tablename__ = 'users'

 id = db.Column(db.Integer, primary_key=True)
 username = db.Column(db.String(40), unique=True, nullable=False)
 full_name = db.Column(db.String(128), unique=False, nullable=True)
 password = db.Column(db.String(200), nullable=False)
 groups = db.relationship(
 'Group',
 secondary=users_groups_assoc,
 backref=db.backref('users', lazy=True))
 avatar = db.Column(db.String(512), nullable=True)
 sessions = db.relationship('Session', backref='user')
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)

Użytkownik może być uwierzytelniony poprzez zapytanie typu POST pod adres /auth/signin, które jest obsługiwane przez klasę zasobów AuthSignIn.

Analogicznie, w celu utworzenia nowego użytkownika należy wysłać zapytanie typu POST pod adres /auth/signup z danymi w formacie JSON. Proces rejestracji jest obsługiwany przez klasę AuthSignUp.

Sesje

Podczas procesu uwierzytelniania, użytkownikowi przydzielany jest indywidualny identyfikator sesji.

Sesja jest reprezentowana przez klasę Session będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

user_id - identyfikator użytkownika

created - data utworzenia sesji

expires - data wygaśnięcia sesji

class Session(db.Model):
 __tablename__ = 'sessions'

 id = db.Column(db.Integer, primary_key=True)
 user_id = db.Column(db.Integer, db.ForeignKey('users.id'))
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)
 expires = db.Column(db.DateTime, nullable=True,
 default=None)

Grupy

Grupy zawierają preferencje filtrowania mieszkań (ustawienia takie jak budżet, maksymalny czas dojazdu) oraz listę osób zapisanych do danej grupy.

Grupa jest reprezentowana przez klasę Group będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

hash - unikalny, alfanumeryczny identyfikator grupy

title - tytuł grupy

city - miasto docelowe

parameters - obiekt przechowujący konfigurację parametrów

owner_id - identyfikator właściciela grupy

status - stan danej grupy, na przykład: active - grupa aktywna.

class Group(db.Model):
 __tablename__ = 'groups'

 id = db.Column(db.Integer, primary_key=True)
 hash = db.Column(db.String(10), unique=True)
 title = db.Column(db.String(120))
 city = db.Column(db.String(255))
 parameters = db.Column(db.PickleType)
 owner_id = db.Column(db.Integer, db.ForeignKey('users.id'))
 status = db.Column(db.String(40), default='activated')
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)

Obszary

Obszary służą do zaznaczania stref na interaktywnej mapie.

W zależności od trybu, ich funkcjonalność może być następująca:

- dla trybu forbidden - wszystkie ogłoszenia znajdujące się w zaznaczonym obszarze będą ignorowane

- dla trybu preferred - w przypadku pojawienia się nowego ogłoszenia w zaznaczonym obszarze nastąpi wysłanie powiadomienia do wszystkich członków grupy

Obszar jest reprezentowany przez klasę Area będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

group_id - identyfikator grupy, do której należy obszar

type - typ obszaru, na przykład: forbidden - obszar na „czarnej liście”

center - punkt środkowy zaznaczanego obszaru

radius - promień zasięgu obszaru

class Area(db.Model):
 __tablename__ = 'areas'

 id = db.Column(db.Integer, primary_key=True)
 group_id = db.Column(db.Integer, db.ForeignKey('groups.id'))
 type = db.Column(db.String(40), default='forbidden')
 center = db.Column(db.Integer, db.ForeignKey('coordinates.id'))
 radius = db.Column(db.Integer)
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)

Zgłoszenia / oferty

Oferty (zwane również zgłoszeniami) to elementy pobrane z portali ogłoszeniowych sprowadzone do wspólnego formatu.

Zgłoszenie jest reprezentowane przez klasę Submission będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

submission_id - unikalny identyfikator ogłoszenia przypisany do platformy

category - kategoria, na przykład: flat - mieszkanie na wynajem, room - pokój na wynajem

origin - pochodzenie ogłoszenia, na przykład: olx

city - miasto, w którym znajduje się dana nieruchomość

title - tytuł ogłoszenia

url - link do pełnej wersji ogłoszenia

description - opis ogłoszenia

price - opublikowana cena za nieruchomość

source_latitude - pierwsza współrzędna bez normalizacji

source_longitude - druga współrzędna bez normalizacji

thumbnail - obrazek podglądowy

images - obiekt przechowujący listę wszystkich opublikowanych zdjęć

attributes - obiekt przechowujący parametry danej nieruchomości takie jak metraż, ilość pokoi

is_scraped - wartość boolowska mówiąca, czy wszystkie dane zostały pobrane z treści ogłoszenia

class Submission(db.Model):
 __tablename__ = 'submissions'
 # __bind_key__ = 'scraping'

 id = db.Column(db.Integer, primary_key=True)
 submission_id = db.Column(db.String(255))
 category = db.Column(db.String(40), nullable=True)
 origin = db.Column(db.String(40))
 city = db.Column(db.String(255))
 title = db.Column(db.String(255))
 url = db.Column(db.String(512))
 description = db.Column(db.Text)
 price = db.Column(db.Integer)
 source_latitude = db.Column(db.Float)
 source_longitude = db.Column(db.Float)
 thumbnail = db.Column(db.String(512))
 images = db.Column(db.PickleType)
 attributes = db.Column(db.PickleType)
 coordinates_id = db.Column(db.Integer, db.ForeignKey('coordinates.id'))
 is_scraped = db.Column(db.Boolean, default=False)
 submitted = db.Column(db.DateTime, nullable=True)
 updated = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)

Ocenione zgłoszenia

Każda grupa może dopasować parametry oceniania do własnych potrzeb, dlatego każde zgłoszenie może być ocenione na różne sposoby.

Z tego powodu powstała osobna struktura ocenionego zgłoszenia przypisanego do grupy - zawierająca wyliczone parametry oraz końcowy wynik.

Ocenione zgłoszenie jest reprezentowane przez klasę CalculatedSubmission będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

hash - unikalny, alfanumeryczny identyfikator ocenionego zgłoszenia

submission_id - identyfikator oferty źródłowej

group_id - identyfikator grupy, na podstawie której wykonywane są obliczenia

rating - końcowy wynik wyliczony z zastosowaniem wszystkich parametrów

parameters - obiekt przechowujący wyliczone parametry oraz ich wartości

status - aktualny stan ogłoszenia, na przykład: removed - usunięte, expired - wygaszone

class CalculatedSubmission(db.Model):
 __tablename__ = 'submissions_calculated'

 id = db.Column(db.Integer, primary_key=True)
 hash = db.Column(db.String(20), unique=True)
 submission_id = db.Column(db.Integer, db.ForeignKey('submissions.id'))
 group_id = db.Column(db.Integer, db.ForeignKey('groups.id'))
 cords_pairs = db.relationship(
 'PairOfCoordinates',
 secondary=submissions_pairs_coordinates_assoc,
 backref=db.backref('submissions', lazy=True))
 rating = db.Column(db.Float)
 parameters = db.Column(db.PickleType)
 status = db.Column(db.String(40))
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)

Współrzędne

W celu optymalizacji obliczeń dla nieruchomości leżących w nieznaczej odległości od siebie, zapisywane współrzędne są normalizowane.

Współrzędne są reprezentowane przez klasę Coordinates będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

latitude - pierwsza współrzędna po normalizacji

longitude - druga współrzędna po normalizacji

class Coordinates(db.Model):
 __tablename__ = 'coordinates'

 id = db.Column(db.Integer, primary_key=True)
 latitude = db.Column(db.Float)
 longitude = db.Column(db.Float)
 submissions = db.relationship('Submission')
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)

Pary współrzędnych

Aby uniknąć duplikowania obliczeń, połączenia między dwoma parami współrzędnych są zapisywane wraz z danymi takimi jak dystans oraz czasy dojazdu dla wybranych środków komunikacji.

Pary współrzędnych są reprezentowane przez klasę PairOfCoordinates będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

origin_id - identyfikator współrzędnych źródła

target_id - identyfikator współrzędnych celu

distance - dystans między dwoma punktami podany w kilometrach

time - obiekt przechowujący czas dojazdu oraz środek komunikacji

calculated - data wyliczenia parametrów

class PairOfCoordinates(db.Model):
 __tablename__ = 'coordinates_pairs'

 id = db.Column(db.Integer, primary_key=True)
 origin_id = db.Column(db.Integer, db.ForeignKey('coordinates.id'))
 target_id = db.Column(db.Integer, db.ForeignKey('coordinates.id'))
 distance = db.Column(db.Float)
 time = db.Column(db.PickleType)
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)
 calculated = db.Column(db.DateTime, nullable=True,
 default=None)

Akcje

Akcje to pojedyncze zdarzenia wykonywane przez użytkownika. Przechowywane są aby móc wyświetlać historię wykonywanych operacji na zgłoszeniach przez członków grupy.

Pojedyncza operacja jest reprezentowane przez klasę Action będącą modelem bazy danych.

Zawiera ona następujące atrybuty:

target_id - identyfikator ocenionego zgłoszenia

action - wykonywana operacja

user_id - identyfikator użytkownika wykonującego działanie

class Action(db.Model):
 __tablename__ = 'actions'

 id = db.Column(db.Integer, primary_key=True)
 target_id = db.Column(db.Integer, db.ForeignKey(
 'submissions_calculated.id'))
 action = db.Column(db.String(40))
 user_id = db.Column(db.Integer, db.ForeignKey('users.id'))
 created = db.Column(db.DateTime, nullable=False,
 default=datetime.utcnow)

Asynchroniczne zadania

Wroflats wykorzystuje strukturę kolejki w celu umieszczania oraz wykonywania zadań w sposób asynchroniczny. Część z dostępnych procesów jest wykonywana automatycznie, pozostałe tworzone są gdy zajdzie potrzeba uzyskania dostępu do dodatkowych obliczeń.

tasks.scrape_indices_init

Wywoływane automatycznie.

Proces pobiera listę skonfigurowanych portali ogłoszeniowych oraz wywołuje tasks.scrape_indices dla każdego elementu.

tasks.scrape_indices

Proces przyjmuje jako argument nazwę portalu ogłoszeniowego.

Wysyła żądanie typu GET do zdefiniowanego adresu, po czym parsuje stronę aby wygenerować listę nowych ogłoszeń.

tasks.scrape_single_init

Wywoływane automatycznie.

Proces pobiera ogłoszenia z bazy danych, które nie zostały jeszcze w całości opracowane.

Wywołuje tasks.scrape_single dla każdego takiego ogłoszenia.

tasks.scrape_single

Proces przyjmuje jako argument identyfikator zgłoszenia.

Wysyła żądanie typu GET do adresu przypisanego do oferty, po czym parsuje stronę aby zaktualizować dane ogłoszenia.

tasks.calculate_submissions

Proces, wykorzystując strukturę Ocenionego zgłoszenia tworzy nowe elementy lub odświeża istniejące wewnątrz wszystkich aktywnych grup. W praktyce polega to na wyliczeniu nowych ocen dla wszystkich ogłoszeń oznaczonych jako active – aktywne.

tasks.calculate_ratings

Proces wylicza końcowy wynik dla danych parametrów ogłoszenia wykorzystując ustawienia wyszukiwania grupy.

Instalacja

System korzysta z kontenerów tworzonych z użyciem narzędzia Docker.

W ich skład wchodzą:

wroflats-api

wroflats-db

wroflats-celery

wroflats-celery-beat

wroflats-client

wroflats-rabbitmq

Uruchomienie całego systemu możliwe jest poprzez wywołanie następującej komendy w katalogu źródłowym projektu:

docker-compose up

Indeks

Jinja2

Jinja2 is a template engine written in pure Python. It provides a
Django [https://www.djangoproject.com/] inspired non-XML syntax but supports inline expressions and
an optional sandboxed [https://en.wikipedia.org/wiki/Sandbox_(computer_security)] environment.

Nutshell

Here a small example of a Jinja template:

{% extends 'base.html' %}
{% block title %}Memberlist{% endblock %}
{% block content %}

 {% for user in users %}
 {{ user.username }}
 {% endfor %}

{% endblock %}

Philosophy

Application logic is for the controller but don’t try to make the life
for the template designer too hard by giving him too few functionality.

For more informations visit the new Jinja2 webpage [http://jinja.pocoo.org/] and documentation [http://jinja.pocoo.org/2/documentation/].

Pillow

Python Imaging Library (Fork)

Pillow is the friendly PIL fork by Alex Clark and Contributors [https://github.com/python-pillow/Pillow/graphs/contributors]. PIL is the Python Imaging Library by Fredrik Lundh and Contributors.

	docs

	[image: Documentation Status] [https://pillow.readthedocs.io/?badge=latest]

	tests

	
[image: Travis CI build status (Linux)] [https://travis-ci.org/python-pillow/Pillow] [image: Travis CI build status (macOS)] [https://travis-ci.org/python-pillow/pillow-wheels] [image: AppVeyor CI build status (Windows)] [https://ci.appveyor.com/project/python-pillow/Pillow] [image: Code coverage] [https://coveralls.io/github/python-pillow/Pillow?branch=master]

	package

	[image: zenodo] [https://zenodo.org/badge/latestdoi/17549/python-pillow/Pillow] [image: Latest PyPI version] [https://pypi.python.org/pypi/Pillow/]

	social

	[image: Join the chat at https://gitter.im/python-pillow/Pillow] [https://gitter.im/python-pillow/Pillow?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge] [image: Follow on https://twitter.com/PythonPillow]

More Information

	Documentation [https://pillow.readthedocs.io/]

	Installation [https://pillow.readthedocs.io/en/latest/installation.html]

	Handbook [https://pillow.readthedocs.io/en/latest/handbook/index.html]

	Contribute [https://github.com/python-pillow/Pillow/blob/master/.github/CONTRIBUTING.md]

	Issues [https://github.com/python-pillow/Pillow/issues]

	Pull requests [https://github.com/python-pillow/Pillow/pulls]

	Changelog [https://github.com/python-pillow/Pillow/blob/master/CHANGES.rst]

	Pre-fork [https://github.com/python-pillow/Pillow/blob/master/CHANGES.rst#pre-fork]

Pygments

Pygments is a syntax highlighting package written in Python.

It is a generic syntax highlighter suitable for use in code hosting, forums,
wikis or other applications that need to prettify source code. Highlights
are:

	a wide range of over 300 languages and other text formats is supported

	special attention is paid to details, increasing quality by a fair amount

	support for new languages and formats are added easily

	a number of output formats, presently HTML, LaTeX, RTF, SVG, all image formats that PIL supports and ANSI sequences

	it is usable as a command-line tool and as a library

	copyright

	Copyright 2006-2017 by the Pygments team, see AUTHORS.

	license

	BSD, see LICENSE for details.

What is Alabaster?

Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx [http://sphinx-doc.org] documentation system. It is Python 2+3 compatible.

It began as a third-party theme, and is still maintained separately, but as of
Sphinx 1.3, Alabaster is an install-time dependency of Sphinx and is selected
as the default theme.

Live examples of this theme can be seen on this project’s own website [http://alabaster.readthedocs.io], paramiko.org [http://paramiko.org],
fabfile.org [http://fabfile.org] and pyinvoke.org [http://pyinvoke.org].

For more documentation, please see http://alabaster.readthedocs.io.

Informacja

You can install the development version via pip install -e
git+https://github.com/bitprophet/alabaster/#egg=alabaster.

Certifi: Python SSL Certificates

Certifi [http://certifi.io/en/latest/] is a carefully curated collection of Root Certificates for
validating the trustworthiness of SSL certificates while verifying the identity
of TLS hosts. It has been extracted from the Requests [http://docs.python-requests.org/en/latest/] project.

Installation

certifi is available on PyPI. Simply install it with pip:

$ pip install certifi

Usage

To reference the installed certificate authority (CA) bundle, you can use the
built-in function:

>>> import certifi

>>> certifi.where()
'/usr/local/lib/python2.7/site-packages/certifi/cacert.pem'

Enjoy!

1024-bit Root Certificates

Browsers and certificate authorities have concluded that 1024-bit keys are
unacceptably weak for certificates, particularly root certificates. For this
reason, Mozilla has removed any weak (i.e. 1024-bit key) certificate from its
bundle, replacing it with an equivalent strong (i.e. 2048-bit or greater key)
certificate from the same CA. Because Mozilla removed these certificates from
its bundle, certifi removed them as well.

In previous versions, certifi provided the certifi.old_where() function
to intentionally re-add the 1024-bit roots back into your bundle. This was not
recommended in production and therefore was removed. To assist in migrating old
code, the function certifi.old_where() continues to exist as an alias of
certifi.where(). Please update your code to use certifi.where()
instead. certifi.old_where() will be removed in 2018.

Chardet: The Universal Character Encoding Detector

[image: Build status]
 [https://travis-ci.org/chardet/chardet][image: ../../../../../_images/stable1.svg]
 [https://coveralls.io/r/chardet/chardet][image: Latest version on PyPI]
 [https://warehouse.python.org/project/chardet/][image: License]
	Detects

	
	ASCII, UTF-8, UTF-16 (2 variants), UTF-32 (4 variants)

	Big5, GB2312, EUC-TW, HZ-GB-2312, ISO-2022-CN (Traditional and Simplified Chinese)

	EUC-JP, SHIFT_JIS, CP932, ISO-2022-JP (Japanese)

	EUC-KR, ISO-2022-KR (Korean)

	KOI8-R, MacCyrillic, IBM855, IBM866, ISO-8859-5, windows-1251 (Cyrillic)

	ISO-8859-5, windows-1251 (Bulgarian)

	ISO-8859-1, windows-1252 (Western European languages)

	ISO-8859-7, windows-1253 (Greek)

	ISO-8859-8, windows-1255 (Visual and Logical Hebrew)

	TIS-620 (Thai)

Informacja

Our ISO-8859-2 and windows-1250 (Hungarian) probers have been temporarily
disabled until we can retrain the models.

Requires Python 2.6, 2.7, or 3.3+.

Installation

Install from PyPI [https://pypi.python.org/pypi/chardet]:

pip install chardet

Documentation

For users, docs are now available at https://chardet.readthedocs.io/.

Command-line Tool

chardet comes with a command-line script which reports on the encodings of one
or more files:

% chardetect somefile someotherfile
somefile: windows-1252 with confidence 0.5
someotherfile: ascii with confidence 1.0

About

This is a continuation of Mark Pilgrim’s excellent chardet. Previously, two
versions needed to be maintained: one that supported python 2.x and one that
supported python 3.x. We’ve recently merged with Ian Cordasco [https://github.com/sigmavirus24]’s
charade [https://github.com/sigmavirus24/charade] fork, so now we have one
coherent version that works for Python 2.6+.

	maintainer

	Dan Blanchard

 Docutils is a modular system for processing documentation
into useful formats, such as HTML, XML, and LaTeX. For
input Docutils supports reStructuredText, an easy-to-read,
what-you-see-is-what-you-get plaintext markup syntax.

 It parses image files» header and return image size.

	PNG

	JPEG

	JPEG2000

	GIF

This is a pure Python library.

packaging

Core utilities for Python packages

Documentation

documentation [https://packaging.pypa.io/]

Discussion

If you run into bugs, you can file them in our issue tracker [https://github.com/pypa/packaging/issues].

You can also join #pypa on Freenode to ask questions or get involved.

Code of Conduct

Everyone interacting in the packaging project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].

Changelog

17.1 - 2017-02-28

	Fix utils.canonicalize_version when supplying non PEP 440 versions.

17.0 - 2017-02-28

	Drop support for python 2.6, 3.2, and 3.3.

	Define minimal pyparsing version to 2.0.2 (#91 [https://github.com/pypa/packaging/issues/91]).

	Add epoch, release, pre, dev, and post attributes to
Version and LegacyVersion (#34 [https://github.com/pypa/packaging/issues/34]).

	Add Version().is_devrelease and LegacyVersion().is_devrelease to
make it easy to determine if a release is a development release.

	Add utils.canonicalize_version to canonicalize version strings or
Version instances (#121 [https://github.com/pypa/packaging/issues/121]).

16.8 - 2016-10-29

	Fix markers that utilize in so that they render correctly.

	Fix an erroneous test on Python RC releases.

16.7 - 2016-04-23

	Add support for the deprecated python_implementation marker which was
an undocumented setuptools marker in addition to the newer markers.

16.6 - 2016-03-29

	Add support for the deprecated, PEP 345 environment markers in addition to
the newer markers.

16.5 - 2016-02-26

	Fix a regression in parsing requirements with whitespaces between the comma
separators.

16.4 - 2016-02-22

	Fix a regression in parsing requirements like foo (==4).

16.3 - 2016-02-21

	Fix a bug where packaging.requirements:Requirement was overly strict when
matching legacy requirements.

16.2 - 2016-02-09

	Add a function that implements the name canonicalization from PEP 503.

16.1 - 2016-02-07

	Implement requirement specifiers from PEP 508.

16.0 - 2016-01-19

	Relicense so that packaging is available under either the Apache License,
Version 2.0 or a 2 Clause BSD license.

	Support installation of packaging when only distutils is available.

	Fix == comparison when there is a prefix and a local version in play.
(#41 [https://github.com/pypa/packaging/issues/41]).

	Implement environment markers from PEP 508.

15.3 - 2015-08-01

	Normalize post-release spellings for rev/r prefixes. #35 [https://github.com/pypa/packaging/issues/35]

15.2 - 2015-05-13

	Fix an error where the arbitary specifier (===) was not correctly
allowing pre-releases when it was being used.

	Expose the specifier and version parts through properties on the
Specifier classes.

	Allow iterating over the SpecifierSet to get access to all of the
Specifier instances.

	Allow testing if a version is contained within a specifier via the in
operator.

15.1 - 2015-04-13

	Fix a logic error that was causing inconsistent answers about whether or not
a pre-release was contained within a SpecifierSet or not.

15.0 - 2015-01-02

	Add Version().is_postrelease and LegacyVersion().is_postrelease to
make it easy to determine if a release is a post release.

	Add Version().base_version and LegacyVersion().base_version to make
it easy to get the public version without any pre or post release markers.

	Support the update to PEP 440 which removed the implied !=V.* when using
either >V or <V and which instead special cased the handling of
pre-releases, post-releases, and local versions when using >V or <V.

14.5 - 2014-12-17

	Normalize release candidates as rc instead of c.

	Expose the VERSION_PATTERN constant, a regular expression matching
a valid version.

14.4 - 2014-12-15

	Ensure that versions are normalized before comparison when used in a
specifier with a less than (<) or greater than (>) operator.

14.3 - 2014-11-19

	BACKWARDS INCOMPATIBLE Refactor specifier support so that it can sanely
handle legacy specifiers as well as PEP 440 specifiers.

	BACKWARDS INCOMPATIBLE Move the specifier support out of
packaging.version into packaging.specifiers.

14.2 - 2014-09-10

	Add prerelease support to Specifier.

	Remove the ability to do item in Specifier() and replace it with
Specifier().contains(item) in order to allow flags that signal if a
prerelease should be accepted or not.

	Add a method Specifier().filter() which will take an iterable and returns
an iterable with items that do not match the specifier filtered out.

14.1 - 2014-09-08

	Allow LegacyVersion and Version to be sorted together.

	Add packaging.version.parse() to enable easily parsing a version string
as either a Version or a LegacyVersion depending on it’s PEP 440
validity.

14.0 - 2014-09-05

	Initial release.

1 pdfrw 0.4

	Author

	Patrick Maupin

Treść

	1 pdfrw 0.4

	1.1 Introduction

	1.2 Examples

	1.2.1 All examples

	1.2.2 Notes on selected examples

	1.2.2.1 Reorganizing pages and placing them two-up

	1.2.2.2 Adding or modifying metadata

	1.2.2.3 Rotating and doubling

	1.2.2.4 Graphics stream parsing proof of concept

	1.3 pdfrw philosophy

	1.3.1 Core library

	1.3.2 Examples

	1.4 PDF files and Python

	1.4.1 Introduction

	1.4.2 Difficulties

	1.4.3 Usage Model

	1.4.3.1 Reading PDFs

	1.4.3.2 Writing PDFs

	1.4.3.3 Manipulating PDFs in memory

	1.4.3.4 Missing features

	1.5 Library internals

	1.5.1 Introduction

	1.5.2 PDF object model support

	1.5.2.1 Ordinary objects

	1.5.2.2 Name objects

	1.5.2.3 String objects

	1.5.2.4 Array objects

	1.5.2.5 Dict objects

	1.5.2.6 Proxy objects

	1.5.3 File reading, tokenization and parsing

	1.5.4 File output

	1.5.5 Advanced features

	1.5.6 Miscellaneous

	1.6 Testing

	1.7 Other libraries

	1.7.1 Pure Python

	1.7.2 non-pure-Python libraries

	1.7.3 Other tools

	1.8 Release information

1.1 Introduction

pdfrw is a Python library and utility that reads and writes PDF files:

	Version 0.4 is tested and works on Python 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6

	Operations include subsetting, merging, rotating, modifying metadata, etc.

	The fastest pure Python PDF parser available

	Has been used for years by a printer in pre-press production

	Can be used with rst2pdf to faithfully reproduce vector images

	Can be used either standalone, or in conjunction with reportlab [http://www.reportlab.org/]
to reuse existing PDFs in new ones

	Permissively licensed

pdfrw will faithfully reproduce vector formats without
rasterization, so the rst2pdf package has used pdfrw
for PDF and SVG images by default since March 2010.

pdfrw can also be used in conjunction with reportlab, in order
to re-use portions of existing PDFs in new PDFs created with
reportlab.

1.2 Examples

The library comes with several examples that show operation both with
and without reportlab.

1.2.1 All examples

The examples directory has a few scripts which use the library.
Note that if these examples do not work with your PDF, you should
try to use pdftk to uncompress and/or unencrypt them first.

	4up.py [https://github.com/pmaupin/pdfrw/tree/master/examples/4up.py] will shrink pages down and place 4 of them on
each output page.

	alter.py [https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py] shows an example of modifying metadata, without
altering the structure of the PDF.

	booklet.py [https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py] shows an example of creating a 2-up output
suitable for printing and folding (e.g on tabloid size paper).

	cat.py [https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py] shows an example of concatenating multiple PDFs together.

	extract.py [https://github.com/pmaupin/pdfrw/tree/master/examples/extract.py] will extract images and Form XObjects (embedded pages)
from existing PDFs to make them easier to use and refer to from
new PDFs (e.g. with reportlab or rst2pdf).

	poster.py [https://github.com/pmaupin/pdfrw/tree/master/examples/poster.py] increases the size of a PDF so it can be printed
as a poster.

	print_two.py [https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py] Allows creation of 8.5 X 5.5” booklets by slicing
8.5 X 11” paper apart after printing.

	rotate.py [https://github.com/pmaupin/pdfrw/tree/master/examples/rotate.py] Rotates all or selected pages in a PDF.

	subset.py [https://github.com/pmaupin/pdfrw/tree/master/examples/subset.py] Creates a new PDF with only a subset of pages from the
original.

	unspread.py [https://github.com/pmaupin/pdfrw/tree/master/examples/unspread.py] Takes a 2-up PDF, and splits out pages.

	watermark.py [https://github.com/pmaupin/pdfrw/tree/master/examples/watermark.py] Adds a watermark PDF image over or under all the pages
of a PDF.

	rl1/4up.py [https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/4up.py] Another 4up example, using reportlab canvas for output.

	rl1/booklet.py [https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/booklet.py] Another booklet example, using reportlab canvas for
output.

	rl1/subset.py [https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/subset.py] Another subsetting example, using reportlab canvas for
output.

	rl1/platypus_pdf_template.py [https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/platypus_pdf_template.py] Another watermarking example, using
reportlab canvas and generated output for the document. Contributed
by user asannes.

	rl2 [https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/] Experimental code for parsing graphics. Needs work.

	subset_booklets.py [https://github.com/pmaupin/pdfrw/tree/master/examples/subset_booklets.py] shows an example of creating a full printable pdf
version in a more professional and pratical way (take a look at
http://www.wikihow.com/Bind-a-Book)

1.2.2 Notes on selected examples

1.2.2.1 Reorganizing pages and placing them two-up

A printer with a fancy printer and/or a full-up copy of Acrobat can
easily turn your small PDF into a little booklet (for example, print 4
letter-sized pages on a single 11” x 17”).

But that assumes several things, including that the personnel know how
to operate the hardware and software. booklet.py [https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py] lets you turn your PDF
into a preformatted booklet, to give them fewer chances to mess it up.

1.2.2.2 Adding or modifying metadata

The cat.py [https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py] example will accept multiple input files on the command
line, concatenate them and output them to output.pdf, after adding some
nonsensical metadata to the output PDF file.

The alter.py [https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py] example alters a single metadata item in a PDF,
and writes the result to a new PDF.

One difference is that, since cat is creating a new PDF structure,
and alter is attempting to modify an existing PDF structure, the
PDF produced by alter (and also by watermark.py) should be
more faithful to the original (except for the desired changes).

For example, the alter.py navigation should be left intact, whereas with
cat.py it will be stripped.

1.2.2.3 Rotating and doubling

If you ever want to print something that is like a small booklet, but
needs to be spiral bound, you either have to do some fancy rearranging,
or just waste half your paper.

The print_two.py [https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py] example program will, for example, make two side-by-side
copies each page of of your PDF on a each output sheet.

But, every other page is flipped, so that you can print double-sided and
the pages will line up properly and be pre-collated.

1.2.2.4 Graphics stream parsing proof of concept

The copy.py [https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/copy.py] script shows a simple example of reading in a PDF, and
using the decodegraphics.py module to try to write the same information
out to a new PDF through a reportlab canvas. (If you know about reportlab,
you know that if you can faithfully render a PDF to a reportlab canvas, you
can do pretty much anything else with that PDF you want.) This kind of
low level manipulation should be done only if you really need to.
decodegraphics is really more than a proof of concept than anything
else. For most cases, just use the Form XObject capability, as shown in
the examples/rl1/booklet.py demo.

1.3 pdfrw philosophy

1.3.1 Core library

The philosophy of the library portion of pdfrw is to provide intuitive
functions to read, manipulate, and write PDF files. There should be
minimal leakage between abstraction layers, although getting useful
work done makes „pure” functionality separation difficult.

A key concept supported by the library is the use of Form XObjects,
which allow easy embedding of pieces of one PDF into another.

Addition of core support to the library is typically done carefully
and thoughtfully, so as not to clutter it up with too many special
cases.

There are a lot of incorrectly formatted PDFs floating around; support
for these is added in some cases. The decision is often based on what
acroread and okular do with the PDFs; if they can display them properly,
then eventually pdfrw should, too, if it is not too difficult or costly.

Contributions are welcome; one user has contributed some decompression
filters and the ability to process PDF 1.5 stream objects. Additional
functionality that would obviously be useful includes additional
decompression filters, the ability to process password-protected PDFs,
and the ability to output linearized PDFs.

1.3.2 Examples

The philosophy of the examples is to provide small, easily-understood
examples that showcase pdfrw functionality.

1.4 PDF files and Python

1.4.1 Introduction

In general, PDF files conceptually map quite well to Python. The major
objects to think about are:

	strings. Most things are strings. These also often decompose
naturally into

	lists of tokens. Tokens can be combined to create higher-level
objects like

	arrays and

	dictionaries and

	Contents streams (which can be more streams of tokens)

1.4.2 Difficulties

The apparent primary difficulty in mapping PDF files to Python is the
PDF file concept of „indirect objects.” Indirect objects provide
the efficiency of allowing a single piece of data to be referred to
from more than one containing object, but probably more importantly,
indirect objects provide a way to get around the chicken and egg
problem of circular object references when mapping arbitrary data
structures to files. To flatten out a circular reference, an indirect
object is referred to instead of being directly included in another
object. PDF files have a global mechanism for locating indirect objects,
and they all have two reference numbers (a reference number and a
„generation” number, in case you wanted to append to the PDF file
rather than just rewriting the whole thing).

pdfrw automatically handles indirect references on reading in a PDF
file. When pdfrw encounters an indirect PDF file object, the
corresponding Python object it creates will have an «indirect» attribute
with a value of True. When writing a PDF file, if you have created
arbitrary data, you just need to make sure that circular references are
broken up by putting an attribute named «indirect» which evaluates to
True on at least one object in every cycle.

Another PDF file concept that doesn’t quite map to regular Python is a
„stream”. Streams are dictionaries which each have an associated
unformatted data block. pdfrw handles streams by placing a special
attribute on a subclassed dictionary.

1.4.3 Usage Model

The usage model for pdfrw treats most objects as strings (it takes their
string representation when writing them to a file). The two main
exceptions are the PdfArray object and the PdfDict object.

PdfArray is a subclass of list with two special features. First,
an «indirect» attribute allows a PdfArray to be written out as
an indirect PDF object. Second, pdfrw reads files lazily, so
PdfArray knows about, and resolves references to other indirect
objects on an as-needed basis.

PdfDict is a subclass of dict that also has an indirect attribute
and lazy reference resolution as well. (And the subclassed
IndirectPdfDict has indirect automatically set True).

But PdfDict also has an optional associated stream. The stream object
defaults to None, but if you assign a stream to the dict, it will
automatically set the PDF /Length attribute for the dictionary.

Finally, since PdfDict instances are indexed by PdfName objects (which
always start with a /) and since most (all?) standard Adobe PdfName
objects use names formatted like „/CamelCase”, it makes sense to allow
access to dictionary elements via object attribute accesses as well as
object index accesses. So usage of PdfDict objects is normally via
attribute access, although non-standard names (though still with a
leading slash) can be accessed via dictionary index lookup.

1.4.3.1 Reading PDFs

The PdfReader object is a subclass of PdfDict, which allows easy access
to an entire document:

>>> from pdfrw import PdfReader
>>> x = PdfReader('source.pdf')
>>> x.keys()
['/Info', '/Size', '/Root']
>>> x.Info
{'/Producer': '(cairo 1.8.6 (http://cairographics.org))',
 '/Creator': '(cairo 1.8.6 (http://cairographics.org))'}
>>> x.Root.keys()
['/Type', '/Pages']

Info, Size, and Root are retrieved from the trailer of the PDF file.

In addition to the tree structure, pdfrw creates a special attribute
named pages, that is a list of all the pages in the document. pdfrw
creates the pages attribute as a simplification for the user, because
the PDF format allows arbitrarily complicated nested dictionaries to
describe the page order. Each entry in the pages list is the PdfDict
object for one of the pages in the file, in order.

>>> len(x.pages)
1
>>> x.pages[0]
{'/Parent': {'/Kids': [{...}], '/Type': '/Pages', '/Count': '1'},
 '/Contents': {'/Length': '11260', '/Filter': None},
 '/Resources': ... (Lots more stuff snipped)
>>> x.pages[0].Contents
{'/Length': '11260', '/Filter': None}
>>> x.pages[0].Contents.stream
'q\n1 1 1 rg /a0 gs\n0 0 0 RG 0.657436
 w\n0 J\n0 j\n[] 0.0 d\n4 M q' ... (Lots more stuff snipped)

1.4.3.2 Writing PDFs

As you can see, it is quite easy to dig down into a PDF document. But
what about when it’s time to write it out?

>>> from pdfrw import PdfWriter
>>> y = PdfWriter()
>>> y.addpage(x.pages[0])
>>> y.write('result.pdf')

That’s all it takes to create a new PDF. You may still need to read the
Adobe PDF reference manual [http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf] to figure out what needs to go into
the PDF, but at least you don’t have to sweat actually building it
and getting the file offsets right.

1.4.3.3 Manipulating PDFs in memory

For the most part, pdfrw tries to be agnostic about the contents of
PDF files, and support them as containers, but to do useful work,
something a little higher-level is required, so pdfrw works to
understand a bit about the contents of the containers. For example:

	PDF pages. pdfrw knows enough to find the pages in PDF files you read
in, and to write a set of pages back out to a new PDF file.

	Form XObjects. pdfrw can take any page or rectangle on a page, and
convert it to a Form XObject, suitable for use inside another PDF
file. It knows enough about these to perform scaling, rotation,
and positioning.

	reportlab objects. pdfrw can recursively create a set of reportlab
objects from its internal object format. This allows, for example,
Form XObjects to be used inside reportlab, so that you can reuse
content from an existing PDF file when building a new PDF with
reportlab.

There are several examples that demonstrate these features in
the example code directory.

1.4.3.4 Missing features

Even as a pure PDF container library, pdfrw comes up a bit short. It
does not currently support:

	Most compression/decompression filters

	encryption

pdftk [https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/] is a wonderful command-line
tool that can convert your PDFs to remove encryption and compression.
However, in most cases, you can do a lot of useful work with PDFs
without actually removing compression, because only certain elements
inside PDFs are actually compressed.

1.5 Library internals

1.5.1 Introduction

pdfrw currently consists of 19 modules organized into a main
package and one sub-package.

The __init.py__ [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/__init__.py] module does the usual thing of importing a few
major attributes from some of the submodules, and the errors.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/errors.py]
module supports logging and exception generation.

1.5.2 PDF object model support

The objects [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/] sub-package contains one module for each of the
internal representations of the kinds of basic objects that exist
in a PDF file, with the objects/__init__.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/__init__.py] module in that
package simply gathering them up and making them available to the
main pdfrw package.

One feature that all the PDF object classes have in common is the
inclusion of an «indirect» attribute. If «indirect» exists and evaluates
to True, then when the object is written out, it is written out as an
indirect object. That is to say, it is addressable in the PDF file, and
could be referenced by any number (including zero) of container objects.
This indirect object capability saves space in PDF files by allowing
objects such as fonts to be referenced from multiple pages, and also
allows PDF files to contain internal circular references. This latter
capability is used, for example, when each page object has a „parent”
object in its dictionary.

1.5.2.1 Ordinary objects

The objects/pdfobject.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfobject.py] module contains the PdfObject class, which is
a subclass of str, and is the catch-all object for any PDF file elements
that are not explicitly represented by other objects, as described below.

1.5.2.2 Name objects

The objects/pdfname.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfname.py] module contains the PdfName singleton object,
which will convert a string into a PDF name by prepending a slash. It can
be used either by calling it or getting an attribute, e.g.:

PdfName.Rotate == PdfName('Rotate') == PdfObject('/Rotate')

In the example above, there is a slight difference between the objects
returned from PdfName, and the object returned from PdfObject. The
PdfName objects are actually objects of class „BasePdfName”. This
is important, because only these may be used as keys in PdfDict objects.

1.5.2.3 String objects

The objects/pdfstring.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfstring.py]
module contains the PdfString class, which is a subclass of str that is
used to represent encoded strings in a PDF file. The class has encode
and decode methods for the strings.

1.5.2.4 Array objects

The objects/pdfarray.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfarray.py]
module contains the PdfArray class, which is a subclass of list that is
used to represent arrays in a PDF file. A regular list could be used
instead, but use of the PdfArray class allows for an indirect attribute
to be set, and also allows for proxying of unresolved indirect objects
(that haven’t been read in yet) in a manner that is transparent to pdfrw
clients.

1.5.2.5 Dict objects

The objects/pdfdict.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfdict.py]
module contains the PdfDict class, which is a subclass of dict that is
used to represent dictionaries in a PDF file. A regular dict could be
used instead, but the PdfDict class matches the requirements of PDF
files more closely:

	Transparent (from the library client’s viewpoint) proxying
of unresolved indirect objects

	Return of None for non-existent keys (like dict.get)

	Mapping of attribute accesses to the dict itself
(pdfdict.Foo == pdfdict[NameObject(«Foo»)])

	Automatic management of following stream and /Length attributes
for content dictionaries

	Indirect attribute

	Other attributes may be set for private internal use of the
library and/or its clients.

	Support for searching parent dictionaries for PDF „inheritable”
attributes.

If a PdfDict has an associated data stream in the PDF file, the stream
is accessed via the «stream» (all lower-case) attribute. Setting the
stream attribute on the PdfDict will automatically set the /Length attribute
as well. If that is not what is desired (for example if the the stream
is compressed), then _stream (same name with an underscore) may be used
to associate the stream with the PdfDict without setting the length.

To set private attributes (that will not be written out to a new PDF
file) on a dictionary, use the «private» attribute:

mydict.private.foo = 1

Once the attribute is set, it may be accessed directly as an attribute
of the dictionary:

foo = mydict.foo

Some attributes of PDF pages are „inheritable.” That is, they may
belong to a parent dictionary (or a parent of a parent dictionary, etc.)
The „inheritable” attribute allows for easy discovery of these:

mediabox = mypage.inheritable.MediaBox

1.5.2.6 Proxy objects

The objects/pdfindirect.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfindirect.py]
module contains the PdfIndirect class, which is a non-transparent proxy
object for PDF objects that have not yet been read in and resolved from
a file. Although these are non-transparent inside the library, client code
should never see one of these – they exist inside the PdfArray and PdfDict
container types, but are resolved before being returned to a client of
those types.

1.5.3 File reading, tokenization and parsing

pdfreader.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfreader.py]
contains the PdfReader class, which can read a PDF file (or be passed a
file object or already read string) and parse it. It uses the PdfTokens
class in tokens.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/tokens.py] for low-level tokenization.

The PdfReader class does not, in general, parse into containers (e.g.
inside the content streams). There is a proof of concept for doing that
inside the examples/rl2 subdirectory, but that is slow and not well-developed,
and not useful for most applications.

An instance of the PdfReader class is an instance of a PdfDict – the
trailer dictionary of the PDF file, to be exact. It will have a private
attribute set on it that is named «pages» that is a list containing all
the pages in the file.

When instantiating a PdfReader object, there are options available
for decompressing all the objects in the file. pdfrw does not currently
have very many options for decompression, so this is not all that useful,
except in the specific case of compressed object streams.

Also, there are no options for decryption yet. If you have PDF files
that are encrypted or heavily compressed, you may find that using another
program like pdftk on them can make them readable by pdfrw.

In general, the objects are read from the file lazily, but this is not
currently true with compressed object streams – all of these are decompressed
and read in when the PdfReader is instantiated.

1.5.4 File output

pdfwriter.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfwriter.py]
contains the PdfWriter class, which can create and output a PDF file.

There are a few options available when creating and using this class.

In the simplest case, an instance of PdfWriter is instantiated, and
then pages are added to it from one or more source files (or created
programmatically), and then the write method is called to dump the
results out to a file.

If you have a source PDF and do not want to disturb the structure
of it too badly, then you may pass its trailer directly to PdfWriter
rather than letting PdfWriter construct one for you. There is an
example of this (alter.py) in the examples directory.

1.5.5 Advanced features

buildxobj.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/buildxobj.py]
contains functions to build Form XObjects out of pages or rectangles on
pages. These may be reused in new PDFs essentially as if they were images.

buildxobj is careful to cache any page used so that it only appears in
the output once.

toreportlab.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/toreportlab.py]
provides the makerl function, which will translate pdfrw objects into a
format which can be used with reportlab [http://www.reportlab.org/].
It is normally used in conjunction with buildxobj, to be able to reuse
parts of existing PDFs when using reportlab.

pagemerge.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pagemerge.py] builds on the foundation laid by buildxobj. It
contains classes to create a new page (or overlay an existing page)
using one or more rectangles from other pages. There are examples
showing its use for watermarking, scaling, 4-up output, splitting
each page in 2, etc.

findobjs.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/findobjs.py] contains code that can find specific kinds of objects
inside a PDF file. The extract.py example uses this module to create
a new PDF that places each image and Form XObject from a source PDF onto
its own page, e.g. for easy reuse with some of the other examples or
with reportlab.

1.5.6 Miscellaneous

compress.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/compress.py] and uncompress.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/uncompress.py]
contains compression and decompression functions. Very few filters are
currently supported, so an external tool like pdftk might be good if you
require the ability to decompress (or, for that matter, decrypt) PDF
files.

py23_diffs.py [https://github.com/pmaupin/pdfrw/tree/master/pdfrw/py23_diffs.py] contains code to help manage the differences between
Python 2 and Python 3.

1.6 Testing

The tests associated with pdfrw require a large number of PDFs,
which are not distributed with the library.

To run the tests:

	Download or clone the full package from github.com/pmaupin/pdfrw

	cd into the tests directory, and then clone the package
github.com/pmaupin/static_pdfs into a subdirectory (also named
static_pdfs).

	Now the tests may be run from that directory using unittest, or
py.test, or nose.

	travisci is used at github, and runs the tests with py.test

1.7 Other libraries

1.7.1 Pure Python

	reportlab [http://www.reportlab.org/]

reportlab is must-have software if you want to programmatically
generate arbitrary PDFs.

	pyPdf [https://github.com/mstamy2/PyPDF2]

pyPdf is, in some ways, very full-featured. It can do decompression
and decryption and seems to know a lot about items inside at least
some kinds of PDF files. In comparison, pdfrw knows less about
specific PDF file features (such as metadata), but focuses on trying
to have a more Pythonic API for mapping the PDF file container
syntax to Python, and (IMO) has a simpler and better PDF file
parser. The Form XObject capability of pdfrw means that, in many
cases, it does not actually need to decompress objects – they
can be left compressed.

	pdftools [http://www.boddie.org.uk/david/Projects/Python/pdftools/index.html]

pdftools feels large and I fell asleep trying to figure out how it
all fit together, but many others have done useful things with it.

	pagecatcher [http://www.reportlab.com/docs/pagecatcher-ds.pdf]

My understanding is that pagecatcher would have done exactly what I
wanted when I built pdfrw. But I was on a zero budget, so I’ve never
had the pleasure of experiencing pagecatcher. I do, however, use and
like reportlab [http://www.reportlab.org/] (open source, from
the people who make pagecatcher) so I’m sure pagecatcher is great,
better documented and much more full-featured than pdfrw.

	pdfminer [http://www.unixuser.org/~euske/python/pdfminer/index.html]

This looks like a useful, actively-developed program. It is quite
large, but then, it is trying to actively comprehend a full PDF
document. From the website:

„PDFMiner is a suite of programs that help extracting and analyzing
text data of PDF documents. Unlike other PDF-related tools, it
allows to obtain the exact location of texts in a page, as well as
other extra information such as font information or ruled lines. It
includes a PDF converter that can transform PDF files into other
text formats (such as HTML). It has an extensible PDF parser that
can be used for other purposes instead of text analysis.”

1.7.2 non-pure-Python libraries

	pyPoppler [https://launchpad.net/poppler-python/] can read PDF
files.

	pycairo [http://www.cairographics.org/pycairo/] can write PDF
files.

	PyMuPDF [https://github.com/rk700/PyMuPDF] high performance rendering
of PDF, (Open)XPS, CBZ and EPUB

1.7.3 Other tools

	pdftk [https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/] is a wonderful command
line tool for basic PDF manipulation. It complements pdfrw extremely
well, supporting many operations such as decryption and decompression
that pdfrw cannot do.

	MuPDF [http://www.mupdf.com/] is a free top performance PDF, (Open)XPS, CBZ and EPUB rendering library
that also comes with some command line tools. One of those, mutool, has big overlaps with pdftk’s -
except it is up to 10 times faster.

1.8 Release information

Revisions:

0.4 – Released 18 September, 2017

	Python 3.6 added to test matrix

	Proper unicode support for text strings in PDFs added

	buildxobj fixes allow better support creating form XObjects
out of compressed pages in some cases

	Compression fixes for Python 3+

	New subset_booklets.py example

	Bug with non-compressed indices into compressed object streams fixed

	Bug with distinguishing compressed object stream first objects fixed

	Better error reporting added for some invalid PDFs (e.g. when reading
past the end of file)

	Better scrubbing of old bookmark information when writing PDFs, to
remove dangling references

	Refactoring of pdfwriter, including updating API, to allow future
enhancements for things like incremental writing

	Minor tokenizer speedup

	Some flate decompressor bugs fixed

	Compression and decompression tests added

	Tests for new unicode handling added

	PdfReader.readpages() recursion error (issue #92) fixed.

	Initial crypt filter support added

0.3 – Released 19 October, 2016.

	Python 3.5 added to test matrix

	Better support under Python 3.x for in-memory PDF file-like objects

	Some pagemerge and Unicode patches added

	Changes to logging allow better coexistence with other packages

	Fix for „from pdfrw import *”

	New fancy_watermark.py example shows off capabilities of pagemerge.py

	metadata.py example renamed to cat.py

0.2 – Released 21 June, 2015. Supports Python 2.6, 2.7, 3.3, and 3.4.

	Several bugs have been fixed

	New regression test functionally tests core with dozens of
PDFs, and also tests examples.

	Core has been ported and tested on Python3 by round-tripping
several difficult files and observing binary matching results
across the different Python versions.

	Still only minimal support for compression and no support
for encryption or newer PDF features. (pdftk is useful
to put PDFs in a form that pdfrw can use.)

0.1 – Released to PyPI in 2012. Supports Python 2.5 - 2.7

 UNKNOWN

pytz - World Timezone Definitions for Python

	Author

	Stuart Bishop <stuart@stuartbishop.net>

Introduction

pytz brings the Olson tz database into Python. This library allows
accurate and cross platform timezone calculations using Python 2.4
or higher. It also solves the issue of ambiguous times at the end
of daylight saving time, which you can read more about in the Python
Library Reference (datetime.tzinfo).

Almost all of the Olson timezones are supported.

Informacja

This library differs from the documented Python API for
tzinfo implementations; if you want to create local wallclock
times you need to use the localize() method documented in this
document. In addition, if you perform date arithmetic on local
times that cross DST boundaries, the result may be in an incorrect
timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get
2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A
normalize() method is provided to correct this. Unfortunately these
issues cannot be resolved without modifying the Python datetime
implementation (see PEP-431).

Installation

This package can either be installed from a .egg file using setuptools,
or from the tarball using the standard Python distutils.

If you are installing from a tarball, run the following command as an
administrative user:

python setup.py install

If you are installing using setuptools, you don’t even need to download
anything as the latest version will be downloaded for you
from the Python package index:

easy_install --upgrade pytz

If you already have the .egg file, you can use that too:

easy_install pytz-2008g-py2.6.egg

Example & Usage

Localized times and date arithmetic

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'

This library only supports two ways of building a localized time. The
first is to use the localize() method provided by the pytz library.
This is used to localize a naive datetime (datetime with no timezone
information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print(loc_dt.strftime(fmt))
2002-10-27 06:00:00 EST-0500

The second way of building a localized time is by converting an existing
localized time using the standard astimezone() method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'

Unfortunately using the tzinfo argument of the standard datetime
constructors «»does not work»» with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt)
'2002-10-27 12:00:00 LMT+0020'

It is safe for timezones without daylight saving transitions though, such
as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt)
'2002-10-27 12:00:00 UTC+0000'

The preferred way of dealing with times is to always work in UTC,
converting to localtime only when generating output to be read
by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'

This library also allows you to do date arithmetic using local
times, although it is more complicated than working in UTC as you
need to use the normalize() method to handle daylight saving time
and other timezone transitions. In this example, loc_dt is set
to the instant when daylight saving time ends in the US/Eastern
timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'

Creating local times is also tricky, and the reason why working with
local times is not recommended. Unfortunately, you cannot just pass
a tzinfo argument when constructing a datetime (see the next
section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

Converting between timezones is more easily done, using the
standard astimezone method.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = utc_dt.astimezone(au_tz)
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> utc_dt == utc_dt2
True

You can take shortcuts when dealing with the UTC side of timezone
conversions. normalize() and localize() are not really
necessary when there are no daylight saving time transitions to
deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

tzinfo API

The tzinfo instances returned by the timezone() function have
been extended to cope with ambiguous times by adding an is_dst
parameter to the utcoffset(), dst() && tzname() methods.

>>> tz = timezone('America/St_Johns')

>>> normal = datetime(2009, 9, 1)
>>> ambiguous = datetime(2009, 10, 31, 23, 30)

The is_dst parameter is ignored for most timestamps. It is only used
during DST transition ambiguous periods to resolve that ambiguity.

>>> tz.utcoffset(normal, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=True)
'NDT'

>>> tz.utcoffset(ambiguous, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(ambiguous, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(ambiguous, is_dst=True)
'NDT'

>>> tz.utcoffset(normal, is_dst=False)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=False)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=False)
'NDT'

>>> tz.utcoffset(ambiguous, is_dst=False)
datetime.timedelta(-1, 73800)
>>> tz.dst(ambiguous, is_dst=False)
datetime.timedelta(0)
>>> tz.tzname(ambiguous, is_dst=False)
'NST'

If is_dst is not specified, ambiguous timestamps will raise
an pytz.exceptions.AmbiguousTimeError exception.

>>> tz.utcoffset(normal)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal)
'NDT'

>>> import pytz.exceptions
>>> try:
... tz.utcoffset(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.dst(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.tzname(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00

Problems with Localtime

The major problem we have to deal with is that certain datetimes
may occur twice in a year. For example, in the US/Eastern timezone
on the last Sunday morning in October, the following sequence
happens:

	01:00 EDT occurs

	1 hour later, instead of 2:00am the clock is turned back 1 hour
and 01:00 happens again (this time 01:00 EST)

In fact, every instant between 01:00 and 02:00 occurs twice. This means
that if you try and create a time in the «US/Eastern» timezone
the standard datetime syntax, there is no way to specify if you meant
before of after the end-of-daylight-saving-time transition. Using the
pytz custom syntax, the best you can do is make an educated guess:

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 1, 30, 00))
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

As you can see, the system has chosen one for you and there is a 50%
chance of it being out by one hour. For some applications, this does
not matter. However, if you are trying to schedule meetings with people
in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC. The pytz
package encourages using UTC for internal timezone representation by
including a special UTC implementation based on the standard Python
reference implementation in the Python documentation.

The UTC timezone unpickles to be the same instance, and pickles to a
smaller size than other pytz tzinfo instances. The UTC implementation
can be obtained as pytz.utc, pytz.UTC, or pytz.timezone(«UTC»).

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p) - len(naive_p)
17
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True

Note that some other timezones are commonly thought of as the same (GMT,
Greenwich, Universal, etc.). The definition of UTC is distinct from these
other timezones, and they are not equivalent. For this reason, they will
not compare the same in Python.

>>> utc == pytz.timezone('GMT')
False

See the section What is UTC, below.

If you insist on working with local times, this library provides a
facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print(est_dt.strftime(fmt) + ' / ' + edt_dt.strftime(fmt))
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500

If you pass None as the is_dst flag to localize(), pytz will refuse to
guess and raise exceptions if you try to build ambiguous or non-existent
times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern
timezone when the clocks where put back at the end of Daylight Saving
Time:

>>> dt = datetime(2002, 10, 27, 1, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % dt)
pytz.exceptions.AmbiguousTimeError: 2002-10-27 01:30:00

Similarly, 2:30am on 7th April 2002 never happened at all in the
US/Eastern timezone, as the clocks where put forward at 2:00am skipping
the entire hour:

>>> dt = datetime(2002, 4, 7, 2, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.NonExistentTimeError:
... print('pytz.exceptions.NonExistentTimeError: %s' % dt)
pytz.exceptions.NonExistentTimeError: 2002-04-07 02:30:00

Both of these exceptions share a common base class to make error handling
easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True

A special case is where countries change their timezone definitions
with no daylight savings time switch. For example, in 1915 Warsaw
switched from Warsaw time to Central European time with no daylight savings
transition. So at the stroke of midnight on August 5th 1915 the clocks
were wound back 24 minutes creating an ambiguous time period that cannot
be specified without referring to the timezone abbreviation or the
actual UTC offset. In this case midnight happened twice, neither time
during a daylight saving time period. pytz handles this transition by
treating the ambiguous period before the switch as daylight savings
time, and the ambiguous period after as standard time.

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> amb_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=True)
>>> amb_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> amb_dt2 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> amb_dt2.strftime(fmt)
'1915-08-04 23:59:59 CET+0100'
>>> switch_dt = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> switch_dt.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(switch_dt - amb_dt1)
'0:24:01'
>>> str(switch_dt - amb_dt2)
'0:00:01'

The best way of creating a time during an ambiguous time period is
by converting from another timezone such as UTC:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'

The standard Python way of handling all these ambiguities is not to
handle them, such as demonstrated in this example using the US/Eastern
timezone definition from the Python documentation (Note that this
implementation only works for dates between 1987 and 2006 - it is
included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'

Notice the first two results? At first glance you might think they are
correct, but taking the UTC offset into account you find that they are
actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'

Country Information

A mechanism is provided to access the timezones commonly in use
for a particular country, looked up using the ISO 3166 country code.
It returns a list of strings that can be used to retrieve the relevant
tzinfo instance using pytz.timezone():

>>> print(' '.join(pytz.country_timezones['nz']))
Pacific/Auckland Pacific/Chatham

The Olson database comes with a ISO 3166 country code to English country
name mapping that pytz exposes as a dictionary:

>>> print(pytz.country_names['nz'])
New Zealand

What is UTC

«UTC» is Coordinated Universal Time [https://en.wikipedia.org/wiki/Coordinated_Universal_Time]. It is a successor to, but distinct
from, Greenwich Mean Time (GMT) and the various definitions of Universal
Time. UTC is now the worldwide standard for regulating clocks and time
measurement.

All other timezones are defined relative to UTC, and include offsets like
UTC+0800 - hours to add or subtract from UTC to derive the local time. No
daylight saving time occurs in UTC, making it a useful timezone to perform
date arithmetic without worrying about the confusion and ambiguities caused
by daylight saving time transitions, your country changing its timezone, or
mobile computers that roam through multiple timezones.

Helpers

There are two lists of timezones provided.

all_timezones is the exhaustive list of the timezone names that can
be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True

common_timezones is a list of useful, current timezones. It doesn’t
contain deprecated zones or historical zones, except for a few I’ve
deemed in common usage, such as US/Eastern (open a bug report if you
think other timezones are deserving of being included here). It is also
a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Eastern' in common_timezones
True
>>> 'Canada/Eastern' in common_timezones
True
>>> 'Australia/Yancowinna' in all_timezones
True
>>> 'Australia/Yancowinna' in common_timezones
False

Both common_timezones and all_timezones are alphabetically
sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True

all_timezones and common_timezones are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False

You can also retrieve lists of timezones used by particular countries
using the country_timezones() function. It requires an ISO-3166
two letter country code.

>>> from pytz import country_timezones
>>> print(' '.join(country_timezones('ch')))
Europe/Zurich
>>> print(' '.join(country_timezones('CH')))
Europe/Zurich

Internationalization - i18n/l10n

Pytz is an interface to the IANA database, which uses ASCII names. The Unicode Consortium’s Unicode Locales (CLDR) [http://cldr.unicode.org]
project provides translations. Thomas Khyn’s
l18n [https://pypi.org/project/l18n/] package can be used to access
these translations from Python.

License

MIT license.

This code is also available as part of Zope 3 under the Zope Public
License, Version 2.1 (ZPL).

I’m happy to relicense this code if necessary for inclusion in other
open source projects.

Latest Versions

This package will be updated after releases of the Olson timezone
database. The latest version can be downloaded from the Python Package
Index [https://pypi.org/project/pytz/]. The code that is used
to generate this distribution is hosted on launchpad.net and available
using git:

git clone https://git.launchpad.net/pytz

A mirror on github is also available at https://github.com/stub42/pytz

Announcements of new releases are made on
Launchpad [https://launchpad.net/pytz], and the
Atom feed [http://feeds.launchpad.net/pytz/announcements.atom]
hosted there.

Bugs, Feature Requests & Patches

Bugs can be reported using Launchpad [https://bugs.launchpad.net/pytz].

Issues & Limitations

	Offsets from UTC are rounded to the nearest whole minute, so timezones
such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This
is a limitation of the Python datetime library.

	If you think a timezone definition is incorrect, I probably can’t fix
it. pytz is a direct translation of the Olson timezone database, and
changes to the timezone definitions need to be made to this source.
If you find errors they should be reported to the time zone mailing
list, linked from http://www.iana.org/time-zones.

Further Reading

More info than you want to know about timezones:
http://www.twinsun.com/tz/tz-link.htm

Contact

Stuart Bishop <stuart@stuartbishop.net>

 The ReportLab Toolkit. An Open Source Python library for generating PDFs and graphics.

Requests: HTTP for Humans

[image: ../../../../../_images/requests.svg]
 [https://pypi.org/project/requests/][image: ../../../../../_images/requests1.svg]
 [https://pypi.org/project/requests/][image: ../../../../../_images/requests2.svg]
 [https://pypi.org/project/requests/][image: codecov.io]
 [https://codecov.io/github/requests/requests][image: ../../../../../_images/requests3.svg]
 [https://github.com/requests/requests/graphs/contributors][image: ../../../../../_images/Say%20Thanks-!-1EAEDB.svg]
 [https://saythanks.io/to/kennethreitz]Requests is the only Non-GMO HTTP library for Python, safe for human
consumption.

[image: ../../../../../_images/35198386374_1939af3de6_k_d.jpg]
Behold, the power of Requests:

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'disk_usage': 368627, u'private_gists': 484, ...}

See the similar code, sans Requests [https://gist.github.com/973705].

[image: ../../../../../_images/requests-logo-small.png]
 [http://docs.python-requests.org/]Requests allows you to send organic, grass-fed HTTP/1.1 requests, without the
need for manual labor. There’s no need to manually add query strings to your
URLs, or to form-encode your POST data. Keep-alive and HTTP connection pooling
are 100% automatic, thanks to urllib3 [https://github.com/shazow/urllib3].

Besides, all the cool kids are doing it. Requests is one of the most
downloaded Python packages of all time, pulling in over 11,000,000 downloads
every month. You don’t want to be left out!

Feature Support

Requests is ready for today’s web.

	International Domains and URLs

	Keep-Alive & Connection Pooling

	Sessions with Cookie Persistence

	Browser-style SSL Verification

	Basic/Digest Authentication

	Elegant Key/Value Cookies

	Automatic Decompression

	Automatic Content Decoding

	Unicode Response Bodies

	Multipart File Uploads

	HTTP(S) Proxy Support

	Connection Timeouts

	Streaming Downloads

	.netrc Support

	Chunked Requests

Requests officially supports Python 2.7 & 3.4–3.6, and runs great on PyPy.

Installation

To install Requests, simply use pipenv [http://pipenv.org/] (or pip, of course):

$ pipenv install requests
✨🍰✨

Satisfaction guaranteed.

Documentation

Fantastic documentation is available at http://docs.python-requests.org/, for a limited time only.

How to Contribute

	Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug. There is a Contributor Friendly [https://github.com/requests/requests/issues?direction=desc&labels=Contributor+Friendly&page=1&sort=updated&state=open] tag for issues that should be ideal for people who are not very familiar with the codebase yet.

	Fork the repository [https://github.com/requests/requests] on GitHub to start making your changes to the master branch (or branch off of it).

	Write a test which shows that the bug was fixed or that the feature works as expected.

	Send a pull request and bug the maintainer until it gets merged and published. :) Make sure to add yourself to AUTHORS [https://github.com/requests/requests/blob/master/AUTHORS.rst].

Release History

dev

	[Short description of non-trivial change.]

2.19.1 (2018-06-14)

Bugfixes

	Fixed issue where status_codes.py’s init function failed trying to append to
a __doc__ value of None.

2.19.0 (2018-06-12)

Improvements

	Warn user about possible slowdown when using cryptography version < 1.3.4

	Check for invalid host in proxy URL, before forwarding request to adapter.

	Fragments are now properly maintained across redirects. (RFC7231 7.1.2)

	Removed use of cgi module to expedite library load time.

	Added support for SHA-256 and SHA-512 digest auth algorithms.

	Minor performance improvement to Request.content.

	Migrate to using collections.abc for 3.7 compatibility.

Bugfixes

	Parsing empty Link headers with parse_header_links() no longer return one bogus entry.

	Fixed issue where loading the default certificate bundle from a zip archive
would raise an IOError.

	Fixed issue with unexpected ImportError on windows system which do not support winreg module.

	DNS resolution in proxy bypass no longer includes the username and password in
the request. This also fixes the issue of DNS queries failing on macOS.

	Properly normalize adapter prefixes for url comparison.

	Passing None as a file pointer to the files param no longer raises an exception.

	Calling copy on a RequestsCookieJar will now preserve the cookie policy correctly.

Dependencies

	We now support idna v2.7.

	We now support urllib3 v1.23.

2.18.4 (2017-08-15)

Improvements

	Error messages for invalid headers now include the header name for easier debugging

Dependencies

	We now support idna v2.6.

2.18.3 (2017-08-02)

Improvements

	Running $ python -m requests.help now includes the installed version of idna.

Bugfixes

	Fixed issue where Requests would raise ConnectionError instead of
SSLError when encountering SSL problems when using urllib3 v1.22.

2.18.2 (2017-07-25)

Bugfixes

	requests.help no longer fails on Python 2.6 due to the absence of
ssl.OPENSSL_VERSION_NUMBER.

Dependencies

	We now support urllib3 v1.22.

2.18.1 (2017-06-14)

Bugfixes

	Fix an error in the packaging whereby the *.whl contained incorrect data
that regressed the fix in v2.17.3.

2.18.0 (2017-06-14)

Improvements

	Response is now a context manager, so can be used directly in a with statement
without first having to be wrapped by contextlib.closing().

Bugfixes

	Resolve installation failure if multiprocessing is not available

	Resolve tests crash if multiprocessing is not able to determine the number of CPU cores

	Resolve error swallowing in utils set_environ generator

2.17.3 (2017-05-29)

Improvements

	Improved packages namespace identity support, for monkeypatching libraries.

2.17.2 (2017-05-29)

Improvements

	Improved packages namespace identity support, for monkeypatching libraries.

2.17.1 (2017-05-29)

Improvements

	Improved packages namespace identity support, for monkeypatching libraries.

2.17.0 (2017-05-29)

Improvements

	Removal of the 301 redirect cache. This improves thread-safety.

2.16.5 (2017-05-28)

	Improvements to $ python -m requests.help.

2.16.4 (2017-05-27)

	Introduction of the $ python -m requests.help command, for debugging with maintainers!

2.16.3 (2017-05-27)

	Further restored the requests.packages namespace for compatibility reasons.

2.16.2 (2017-05-27)

	Further restored the requests.packages namespace for compatibility reasons.

No code modification (noted below) should be necessary any longer.

2.16.1 (2017-05-27)

	Restored the requests.packages namespace for compatibility reasons.

	Bugfix for urllib3 version parsing.

Note: code that was written to import against the requests.packages
namespace previously will have to import code that rests at this module-level
now.

For example:

from requests.packages.urllib3.poolmanager import PoolManager

Will need to be re-written to be:

from requests.packages import urllib3
urllib3.poolmanager.PoolManager

Or, even better:

from urllib3.poolmanager import PoolManager

2.16.0 (2017-05-26)

	Unvendor ALL the things!

2.15.1 (2017-05-26)

	Everyone makes mistakes.

2.15.0 (2017-05-26)

Improvements

	Introduction of the Response.next property, for getting the next
PreparedResponse from a redirect chain (when allow_redirects=False).

	Internal refactoring of __version__ module.

Bugfixes

	Restored once-optional parameter for requests.utils.get_environ_proxies().

2.14.2 (2017-05-10)

Bugfixes

	Changed a less-than to an equal-to and an or in the dependency markers to
widen compatibility with older setuptools releases.

2.14.1 (2017-05-09)

Bugfixes

	Changed the dependency markers to widen compatibility with older pip
releases.

2.14.0 (2017-05-09)

Improvements

	It is now possible to pass no_proxy as a key to the proxies
dictionary to provide handling similar to the NO_PROXY environment
variable.

	When users provide invalid paths to certificate bundle files or directories
Requests now raises IOError, rather than failing at the time of the HTTPS
request with a fairly inscrutable certificate validation error.

	The behavior of SessionRedirectMixin was slightly altered.
resolve_redirects will now detect a redirect by calling
get_redirect_target(response) instead of directly
querying Response.is_redirect and Response.headers['location'].
Advanced users will be able to process malformed redirects more easily.

	Changed the internal calculation of elapsed request time to have higher
resolution on Windows.

	Added win_inet_pton as conditional dependency for the [socks] extra
on Windows with Python 2.7.

	Changed the proxy bypass implementation on Windows: the proxy bypass
check doesn’t use forward and reverse DNS requests anymore

	URLs with schemes that begin with http but are not http or https
no longer have their host parts forced to lowercase.

Bugfixes

	Much improved handling of non-ASCII Location header values in redirects.
Fewer UnicodeDecodeErrors are encountered on Python 2, and Python 3 now
correctly understands that Latin-1 is unlikely to be the correct encoding.

	If an attempt to seek file to find out its length fails, we now
appropriately handle that by aborting our content-length calculations.

	Restricted HTTPDigestAuth to only respond to auth challenges made on 4XX
responses, rather than to all auth challenges.

	Fixed some code that was firing DeprecationWarning on Python 3.6.

	The dismayed person emoticon (/o\\) no longer has a big head. I’m sure
this is what you were all worrying about most.

Miscellaneous

	Updated bundled urllib3 to v1.21.1.

	Updated bundled chardet to v3.0.2.

	Updated bundled idna to v2.5.

	Updated bundled certifi to 2017.4.17.

2.13.0 (2017-01-24)

Features

	Only load the idna library when we’ve determined we need it. This will
save some memory for users.

Miscellaneous

	Updated bundled urllib3 to 1.20.

	Updated bundled idna to 2.2.

2.12.5 (2017-01-18)

Bugfixes

	Fixed an issue with JSON encoding detection, specifically detecting
big-endian UTF-32 with BOM.

2.12.4 (2016-12-14)

Bugfixes

	Fixed regression from 2.12.2 where non-string types were rejected in the
basic auth parameters. While support for this behaviour has been readded,
the behaviour is deprecated and will be removed in the future.

2.12.3 (2016-12-01)

Bugfixes

	Fixed regression from v2.12.1 for URLs with schemes that begin with „http”.
These URLs have historically been processed as though they were HTTP-schemed
URLs, and so have had parameters added. This was removed in v2.12.2 in an
overzealous attempt to resolve problems with IDNA-encoding those URLs. This
change was reverted: the other fixes for IDNA-encoding have been judged to
be sufficient to return to the behaviour Requests had before v2.12.0.

2.12.2 (2016-11-30)

Bugfixes

	Fixed several issues with IDNA-encoding URLs that are technically invalid but
which are widely accepted. Requests will now attempt to IDNA-encode a URL if
it can but, if it fails, and the host contains only ASCII characters, it will
be passed through optimistically. This will allow users to opt-in to using
IDNA2003 themselves if they want to, and will also allow technically invalid
but still common hostnames.

	Fixed an issue where URLs with leading whitespace would raise
InvalidSchema errors.

	Fixed an issue where some URLs without the HTTP or HTTPS schemes would still
have HTTP URL preparation applied to them.

	Fixed an issue where Unicode strings could not be used in basic auth.

	Fixed an issue encountered by some Requests plugins where constructing a
Response object would cause Response.content to raise an
AttributeError.

2.12.1 (2016-11-16)

Bugfixes

	Updated setuptools «security» extra for the new PyOpenSSL backend in urllib3.

Miscellaneous

	Updated bundled urllib3 to 1.19.1.

2.12.0 (2016-11-15)

Improvements

	Updated support for internationalized domain names from IDNA2003 to IDNA2008.
This updated support is required for several forms of IDNs and is mandatory
for .de domains.

	Much improved heuristics for guessing content lengths: Requests will no
longer read an entire StringIO into memory.

	Much improved logic for recalculating Content-Length headers for
PreparedRequest objects.

	Improved tolerance for file-like objects that have no tell method but
do have a seek method.

	Anything that is a subclass of Mapping is now treated like a dictionary
by the data= keyword argument.

	Requests now tolerates empty passwords in proxy credentials, rather than
stripping the credentials.

	If a request is made with a file-like object as the body and that request is
redirected with a 307 or 308 status code, Requests will now attempt to
rewind the body object so it can be replayed.

Bugfixes

	When calling response.close, the call to close will be propagated
through to non-urllib3 backends.

	Fixed issue where the ALL_PROXY environment variable would be preferred
over scheme-specific variables like HTTP_PROXY.

	Fixed issue where non-UTF8 reason phrases got severely mangled by falling
back to decoding using ISO 8859-1 instead.

	Fixed a bug where Requests would not correctly correlate cookies set when
using custom Host headers if those Host headers did not use the native
string type for the platform.

Miscellaneous

	Updated bundled urllib3 to 1.19.

	Updated bundled certifi certs to 2016.09.26.

2.11.1 (2016-08-17)

Bugfixes

	Fixed a bug when using iter_content with decode_unicode=True for
streamed bodies would raise AttributeError. This bug was introduced in
2.11.

	Strip Content-Type and Transfer-Encoding headers from the header block when
following a redirect that transforms the verb from POST/PUT to GET.

2.11.0 (2016-08-08)

Improvements

	Added support for the ALL_PROXY environment variable.

	Reject header values that contain leading whitespace or newline characters to
reduce risk of header smuggling.

Bugfixes

	Fixed occasional TypeError when attempting to decode a JSON response that
occurred in an error case. Now correctly returns a ValueError.

	Requests would incorrectly ignore a non-CIDR IP address in the NO_PROXY
environment variables: Requests now treats it as a specific IP.

	Fixed a bug when sending JSON data that could cause us to encounter obscure
OpenSSL errors in certain network conditions (yes, really).

	Added type checks to ensure that iter_content only accepts integers and
None for chunk sizes.

	Fixed issue where responses whose body had not been fully consumed would have
the underlying connection closed but not returned to the connection pool,
which could cause Requests to hang in situations where the HTTPAdapter
had been configured to use a blocking connection pool.

Miscellaneous

	Updated bundled urllib3 to 1.16.

	Some previous releases accidentally accepted non-strings as acceptable header values. This release does not.

2.10.0 (2016-04-29)

New Features

	SOCKS Proxy Support! (requires PySocks; $ pip install requests[socks])

Miscellaneous

	Updated bundled urllib3 to 1.15.1.

2.9.2 (2016-04-29)

Improvements

	Change built-in CaseInsensitiveDict (used for headers) to use OrderedDict
as its underlying datastore.

Bugfixes

	Don’t use redirect_cache if allow_redirects=False

	When passed objects that throw exceptions from tell(), send them via
chunked transfer encoding instead of failing.

	Raise a ProxyError for proxy related connection issues.

2.9.1 (2015-12-21)

Bugfixes

	Resolve regression introduced in 2.9.0 that made it impossible to send binary
strings as bodies in Python 3.

	Fixed errors when calculating cookie expiration dates in certain locales.

Miscellaneous

	Updated bundled urllib3 to 1.13.1.

2.9.0 (2015-12-15)

Minor Improvements (Backwards compatible)

	The verify keyword argument now supports being passed a path to a
directory of CA certificates, not just a single-file bundle.

	Warnings are now emitted when sending files opened in text mode.

	Added the 511 Network Authentication Required status code to the status code
registry.

Bugfixes

	For file-like objects that are not seeked to the very beginning, we now
send the content length for the number of bytes we will actually read, rather
than the total size of the file, allowing partial file uploads.

	When uploading file-like objects, if they are empty or have no obvious
content length we set Transfer-Encoding: chunked rather than
Content-Length: 0.

	We correctly receive the response in buffered mode when uploading chunked
bodies.

	We now handle being passed a query string as a bytestring on Python 3, by
decoding it as UTF-8.

	Sessions are now closed in all cases (exceptional and not) when using the
functional API rather than leaking and waiting for the garbage collector to
clean them up.

	Correctly handle digest auth headers with a malformed qop directive that
contains no token, by treating it the same as if no qop directive was
provided at all.

	Minor performance improvements when removing specific cookies by name.

Miscellaneous

	Updated urllib3 to 1.13.

2.8.1 (2015-10-13)

Bugfixes

	Update certificate bundle to match certifi 2015.9.6.2’s weak certificate
bundle.

	Fix a bug in 2.8.0 where requests would raise ConnectTimeout instead of
ConnectionError

	When using the PreparedRequest flow, requests will now correctly respect the
json parameter. Broken in 2.8.0.

	When using the PreparedRequest flow, requests will now correctly handle a
Unicode-string method name on Python 2. Broken in 2.8.0.

2.8.0 (2015-10-05)

Minor Improvements (Backwards Compatible)

	Requests now supports per-host proxies. This allows the proxies
dictionary to have entries of the form
{'<scheme>://<hostname>': '<proxy>'}. Host-specific proxies will be used
in preference to the previously-supported scheme-specific ones, but the
previous syntax will continue to work.

	Response.raise_for_status now prints the URL that failed as part of the
exception message.

	requests.utils.get_netrc_auth now takes an raise_errors kwarg,
defaulting to False. When True, errors parsing .netrc files cause
exceptions to be thrown.

	Change to bundled projects import logic to make it easier to unbundle
requests downstream.

	Changed the default User-Agent string to avoid leaking data on Linux: now
contains only the requests version.

Bugfixes

	The json parameter to post() and friends will now only be used if
neither data nor files are present, consistent with the
documentation.

	We now ignore empty fields in the NO_PROXY environment variable.

	Fixed problem where httplib.BadStatusLine would get raised if combining
stream=True with contextlib.closing.

	Prevented bugs where we would attempt to return the same connection back to
the connection pool twice when sending a Chunked body.

	Miscellaneous minor internal changes.

	Digest Auth support is now thread safe.

Updates

	Updated urllib3 to 1.12.

2.7.0 (2015-05-03)

This is the first release that follows our new release process. For more, see
our documentation [http://docs.python-requests.org/en/latest/community/release-process/].

Bugfixes

	Updated urllib3 to 1.10.4, resolving several bugs involving chunked transfer
encoding and response framing.

2.6.2 (2015-04-23)

Bugfixes

	Fix regression where compressed data that was sent as chunked data was not
properly decompressed. (#2561)

2.6.1 (2015-04-22)

Bugfixes

	Remove VendorAlias import machinery introduced in v2.5.2.

	Simplify the PreparedRequest.prepare API: We no longer require the user to
pass an empty list to the hooks keyword argument. (c.f. #2552)

	Resolve redirects now receives and forwards all of the original arguments to
the adapter. (#2503)

	Handle UnicodeDecodeErrors when trying to deal with a unicode URL that
cannot be encoded in ASCII. (#2540)

	Populate the parsed path of the URI field when performing Digest
Authentication. (#2426)

	Copy a PreparedRequest’s CookieJar more reliably when it is not an instance
of RequestsCookieJar. (#2527)

2.6.0 (2015-03-14)

Bugfixes

	CVE-2015-2296: Fix handling of cookies on redirect. Previously a cookie
without a host value set would use the hostname for the redirected URL
exposing requests users to session fixation attacks and potentially cookie
stealing. This was disclosed privately by Matthew Daley of
BugFuzz [https://bugfuzz.com]. This affects all versions of requests from
v2.1.0 to v2.5.3 (inclusive on both ends).

	Fix error when requests is an install_requires dependency and python
setup.py test is run. (#2462)

	Fix error when urllib3 is unbundled and requests continues to use the
vendored import location.

	Include fixes to urllib3’s header handling.

	Requests» handling of unvendored dependencies is now more restrictive.

Features and Improvements

	Support bytearrays when passed as parameters in the files argument.
(#2468)

	Avoid data duplication when creating a request with str, bytes, or
bytearray input to the files argument.

2.5.3 (2015-02-24)

Bugfixes

	Revert changes to our vendored certificate bundle. For more context see
(#2455, #2456, and http://bugs.python.org/issue23476)

2.5.2 (2015-02-23)

Features and Improvements

	Add sha256 fingerprint support. (shazow/urllib3#540 [https://github.com/shazow/urllib3/pull/540])

	Improve the performance of headers. (shazow/urllib3#544 [https://github.com/shazow/urllib3/pull/544])

Bugfixes

	Copy pip’s import machinery. When downstream redistributors remove
requests.packages.urllib3 the import machinery will continue to let those
same symbols work. Example usage in requests» documentation and 3rd-party
libraries relying on the vendored copies of urllib3 will work without having
to fallback to the system urllib3.

	Attempt to quote parts of the URL on redirect if unquoting and then quoting
fails. (#2356)

	Fix filename type check for multipart form-data uploads. (#2411)

	Properly handle the case where a server issuing digest authentication
challenges provides both auth and auth-int qop-values. (#2408)

	Fix a socket leak. (shazow/urllib3#549 [https://github.com/shazow/urllib3/pull/549])

	Fix multiple Set-Cookie headers properly. (shazow/urllib3#534 [https://github.com/shazow/urllib3/pull/534])

	Disable the built-in hostname verification. (shazow/urllib3#526 [https://github.com/shazow/urllib3/pull/526])

	Fix the behaviour of decoding an exhausted stream. (shazow/urllib3#535 [https://github.com/shazow/urllib3/pull/535])

Security

	Pulled in an updated cacert.pem.

	Drop RC4 from the default cipher list. (shazow/urllib3#551 [https://github.com/shazow/urllib3/pull/551])

2.5.1 (2014-12-23)

Behavioural Changes

	Only catch HTTPErrors in raise_for_status (#2382)

Bugfixes

	Handle LocationParseError from urllib3 (#2344)

	Handle file-like object filenames that are not strings (#2379)

	Unbreak HTTPDigestAuth handler. Allow new nonces to be negotiated (#2389)

2.5.0 (2014-12-01)

Improvements

	Allow usage of urllib3’s Retry object with HTTPAdapters (#2216)

	The iter_lines method on a response now accepts a delimiter with which
to split the content (#2295)

Behavioural Changes

	Add deprecation warnings to functions in requests.utils that will be removed
in 3.0 (#2309)

	Sessions used by the functional API are always closed (#2326)

	Restrict requests to HTTP/1.1 and HTTP/1.0 (stop accepting HTTP/0.9) (#2323)

Bugfixes

	Only parse the URL once (#2353)

	Allow Content-Length header to always be overridden (#2332)

	Properly handle files in HTTPDigestAuth (#2333)

	Cap redirect_cache size to prevent memory abuse (#2299)

	Fix HTTPDigestAuth handling of redirects after authenticating successfully
(#2253)

	Fix crash with custom method parameter to Session.request (#2317)

	Fix how Link headers are parsed using the regular expression library (#2271)

Documentation

	Add more references for interlinking (#2348)

	Update CSS for theme (#2290)

	Update width of buttons and sidebar (#2289)

	Replace references of Gittip with Gratipay (#2282)

	Add link to changelog in sidebar (#2273)

2.4.3 (2014-10-06)

Bugfixes

	Unicode URL improvements for Python 2.

	Re-order JSON param for backwards compat.

	Automatically defrag authentication schemes from host/pass URIs. (#2249 [https://github.com/requests/requests/issues/2249])

2.4.2 (2014-10-05)

Improvements

	FINALLY! Add json parameter for uploads! (#2258 [https://github.com/requests/requests/pull/2258])

	Support for bytestring URLs on Python 3.x (#2238 [https://github.com/requests/requests/pull/2238])

Bugfixes

	Avoid getting stuck in a loop (#2244 [https://github.com/requests/requests/pull/2244])

	Multiple calls to iter* fail with unhelpful error. (#2240 [https://github.com/requests/requests/issues/2240], #2241 [https://github.com/requests/requests/issues/2241])

Documentation

	Correct redirection introduction (#2245 [https://github.com/requests/requests/pull/2245/])

	Added example of how to send multiple files in one request. (#2227 [https://github.com/requests/requests/pull/2227/])

	Clarify how to pass a custom set of CAs (#2248 [https://github.com/requests/requests/pull/2248/])

2.4.1 (2014-09-09)

	Now has a „security” package extras set, $ pip install requests[security]

	Requests will now use Certifi if it is available.

	Capture and re-raise urllib3 ProtocolError

	Bugfix for responses that attempt to redirect to themselves forever (wtf?).

2.4.0 (2014-08-29)

Behavioral Changes

	Connection: keep-alive header is now sent automatically.

Improvements

	Support for connect timeouts! Timeout now accepts a tuple (connect, read) which is used to set individual connect and read timeouts.

	Allow copying of PreparedRequests without headers/cookies.

	Updated bundled urllib3 version.

	Refactored settings loading from environment – new Session.merge_environment_settings.

	Handle socket errors in iter_content.

2.3.0 (2014-05-16)

API Changes

	New Response property is_redirect, which is true when the
library could have processed this response as a redirection (whether
or not it actually did).

	The timeout parameter now affects requests with both stream=True and
stream=False equally.

	The change in v2.0.0 to mandate explicit proxy schemes has been reverted.
Proxy schemes now default to http://.

	The CaseInsensitiveDict used for HTTP headers now behaves like a normal
dictionary when references as string or viewed in the interpreter.

Bugfixes

	No longer expose Authorization or Proxy-Authorization headers on redirect.
Fix CVE-2014-1829 and CVE-2014-1830 respectively.

	Authorization is re-evaluated each redirect.

	On redirect, pass url as native strings.

	Fall-back to autodetected encoding for JSON when Unicode detection fails.

	Headers set to None on the Session are now correctly not sent.

	Correctly honor decode_unicode even if it wasn’t used earlier in the same
response.

	Stop advertising compress as a supported Content-Encoding.

	The Response.history parameter is now always a list.

	Many, many urllib3 bugfixes.

2.2.1 (2014-01-23)

Bugfixes

	Fixes incorrect parsing of proxy credentials that contain a literal or encoded «#» character.

	Assorted urllib3 fixes.

2.2.0 (2014-01-09)

API Changes

	New exception: ContentDecodingError. Raised instead of urllib3
DecodeError exceptions.

Bugfixes

	Avoid many many exceptions from the buggy implementation of proxy_bypass on OS X in Python 2.6.

	Avoid crashing when attempting to get authentication credentials from ~/.netrc when running as a user without a home directory.

	Use the correct pool size for pools of connections to proxies.

	Fix iteration of CookieJar objects.

	Ensure that cookies are persisted over redirect.

	Switch back to using chardet, since it has merged with charade.

2.1.0 (2013-12-05)

	Updated CA Bundle, of course.

	Cookies set on individual Requests through a Session (e.g. via Session.get()) are no longer persisted to the Session.

	Clean up connections when we hit problems during chunked upload, rather than leaking them.

	Return connections to the pool when a chunked upload is successful, rather than leaking it.

	Match the HTTPbis recommendation for HTTP 301 redirects.

	Prevent hanging when using streaming uploads and Digest Auth when a 401 is received.

	Values of headers set by Requests are now always the native string type.

	Fix previously broken SNI support.

	Fix accessing HTTP proxies using proxy authentication.

	Unencode HTTP Basic usernames and passwords extracted from URLs.

	Support for IP address ranges for no_proxy environment variable

	Parse headers correctly when users override the default Host: header.

	Avoid munging the URL in case of case-sensitive servers.

	Looser URL handling for non-HTTP/HTTPS urls.

	Accept unicode methods in Python 2.6 and 2.7.

	More resilient cookie handling.

	Make Response objects pickleable.

	Actually added MD5-sess to Digest Auth instead of pretending to like last time.

	Updated internal urllib3.

	Fixed @Lukasa’s lack of taste.

2.0.1 (2013-10-24)

	Updated included CA Bundle with new mistrusts and automated process for the future

	Added MD5-sess to Digest Auth

	Accept per-file headers in multipart file POST messages.

	Fixed: Don’t send the full URL on CONNECT messages.

	Fixed: Correctly lowercase a redirect scheme.

	Fixed: Cookies not persisted when set via functional API.

	Fixed: Translate urllib3 ProxyError into a requests ProxyError derived from ConnectionError.

	Updated internal urllib3 and chardet.

2.0.0 (2013-09-24)

API Changes:

	Keys in the Headers dictionary are now native strings on all Python versions,
i.e. bytestrings on Python 2, unicode on Python 3.

	Proxy URLs now must have an explicit scheme. A MissingSchema exception
will be raised if they don’t.

	Timeouts now apply to read time if Stream=False.

	RequestException is now a subclass of IOError, not RuntimeError.

	Added new method to PreparedRequest objects: PreparedRequest.copy().

	Added new method to Session objects: Session.update_request(). This
method updates a Request object with the data (e.g. cookies) stored on
the Session.

	Added new method to Session objects: Session.prepare_request(). This
method updates and prepares a Request object, and returns the
corresponding PreparedRequest object.

	Added new method to HTTPAdapter objects: HTTPAdapter.proxy_headers().
This should not be called directly, but improves the subclass interface.

	httplib.IncompleteRead exceptions caused by incorrect chunked encoding
will now raise a Requests ChunkedEncodingError instead.

	Invalid percent-escape sequences now cause a Requests InvalidURL
exception to be raised.

	HTTP 208 no longer uses reason phrase "im_used". Correctly uses
"already_reported".

	HTTP 226 reason added ("im_used").

Bugfixes:

	Vastly improved proxy support, including the CONNECT verb. Special thanks to
the many contributors who worked towards this improvement.

	Cookies are now properly managed when 401 authentication responses are
received.

	Chunked encoding fixes.

	Support for mixed case schemes.

	Better handling of streaming downloads.

	Retrieve environment proxies from more locations.

	Minor cookies fixes.

	Improved redirect behaviour.

	Improved streaming behaviour, particularly for compressed data.

	Miscellaneous small Python 3 text encoding bugs.

	.netrc no longer overrides explicit auth.

	Cookies set by hooks are now correctly persisted on Sessions.

	Fix problem with cookies that specify port numbers in their host field.

	BytesIO can be used to perform streaming uploads.

	More generous parsing of the no_proxy environment variable.

	Non-string objects can be passed in data values alongside files.

1.2.3 (2013-05-25)

	Simple packaging fix

1.2.2 (2013-05-23)

	Simple packaging fix

1.2.1 (2013-05-20)

	301 and 302 redirects now change the verb to GET for all verbs, not just
POST, improving browser compatibility.

	Python 3.3.2 compatibility

	Always percent-encode location headers

	Fix connection adapter matching to be most-specific first

	new argument to the default connection adapter for passing a block argument

	prevent a KeyError when there’s no link headers

1.2.0 (2013-03-31)

	Fixed cookies on sessions and on requests

	Significantly change how hooks are dispatched - hooks now receive all the
arguments specified by the user when making a request so hooks can make a
secondary request with the same parameters. This is especially necessary for
authentication handler authors

	certifi support was removed

	Fixed bug where using OAuth 1 with body signature_type sent no data

	Major proxy work thanks to @Lukasa including parsing of proxy authentication
from the proxy url

	Fix DigestAuth handling too many 401s

	Update vendored urllib3 to include SSL bug fixes

	Allow keyword arguments to be passed to json.loads() via the
Response.json() method

	Don’t send Content-Length header by default on GET or HEAD
requests

	Add elapsed attribute to Response objects to time how long a request
took.

	Fix RequestsCookieJar

	Sessions and Adapters are now picklable, i.e., can be used with the
multiprocessing library

	Update charade to version 1.0.3

The change in how hooks are dispatched will likely cause a great deal of
issues.

1.1.0 (2013-01-10)

	CHUNKED REQUESTS

	Support for iterable response bodies

	Assume servers persist redirect params

	Allow explicit content types to be specified for file data

	Make merge_kwargs case-insensitive when looking up keys

1.0.3 (2012-12-18)

	Fix file upload encoding bug

	Fix cookie behavior

1.0.2 (2012-12-17)

	Proxy fix for HTTPAdapter.

1.0.1 (2012-12-17)

	Cert verification exception bug.

	Proxy fix for HTTPAdapter.

1.0.0 (2012-12-17)

	Massive Refactor and Simplification

	Switch to Apache 2.0 license

	Swappable Connection Adapters

	Mountable Connection Adapters

	Mutable ProcessedRequest chain

	/s/prefetch/stream

	Removal of all configuration

	Standard library logging

	Make Response.json() callable, not property.

	Usage of new charade project, which provides python 2 and 3 simultaneous chardet.

	Removal of all hooks except «response»

	Removal of all authentication helpers (OAuth, Kerberos)

This is not a backwards compatible change.

0.14.2 (2012-10-27)

	Improved mime-compatible JSON handling

	Proxy fixes

	Path hack fixes

	Case-Insensitive Content-Encoding headers

	Support for CJK parameters in form posts

0.14.1 (2012-10-01)

	Python 3.3 Compatibility

	Simply default accept-encoding

	Bugfixes

0.14.0 (2012-09-02)

	No more iter_content errors if already downloaded.

0.13.9 (2012-08-25)

	Fix for OAuth + POSTs

	Remove exception eating from dispatch_hook

	General bugfixes

0.13.8 (2012-08-21)

	Incredible Link header support :)

0.13.7 (2012-08-19)

	Support for (key, value) lists everywhere.

	Digest Authentication improvements.

	Ensure proxy exclusions work properly.

	Clearer UnicodeError exceptions.

	Automatic casting of URLs to strings (fURL and such)

	Bugfixes.

0.13.6 (2012-08-06)

	Long awaited fix for hanging connections!

0.13.5 (2012-07-27)

	Packaging fix

0.13.4 (2012-07-27)

	GSSAPI/Kerberos authentication!

	App Engine 2.7 Fixes!

	Fix leaking connections (from urllib3 update)

	OAuthlib path hack fix

	OAuthlib URL parameters fix.

0.13.3 (2012-07-12)

	Use simplejson if available.

	Do not hide SSLErrors behind Timeouts.

	Fixed param handling with urls containing fragments.

	Significantly improved information in User Agent.

	client certificates are ignored when verify=False

0.13.2 (2012-06-28)

	Zero dependencies (once again)!

	New: Response.reason

	Sign querystring parameters in OAuth 1.0

	Client certificates no longer ignored when verify=False

	Add openSUSE certificate support

0.13.1 (2012-06-07)

	Allow passing a file or file-like object as data.

	Allow hooks to return responses that indicate errors.

	Fix Response.text and Response.json for body-less responses.

0.13.0 (2012-05-29)

	Removal of Requests.async in favor of grequests [https://github.com/kennethreitz/grequests]

	Allow disabling of cookie persistence.

	New implementation of safe_mode

	cookies.get now supports default argument

	Session cookies not saved when Session.request is called with return_response=False

	Env: no_proxy support.

	RequestsCookieJar improvements.

	Various bug fixes.

0.12.1 (2012-05-08)

	New Response.json property.

	Ability to add string file uploads.

	Fix out-of-range issue with iter_lines.

	Fix iter_content default size.

	Fix POST redirects containing files.

0.12.0 (2012-05-02)

	EXPERIMENTAL OAUTH SUPPORT!

	Proper CookieJar-backed cookies interface with awesome dict-like interface.

	Speed fix for non-iterated content chunks.

	Move pre_request to a more usable place.

	New pre_send hook.

	Lazily encode data, params, files.

	Load system Certificate Bundle if certify isn’t available.

	Cleanups, fixes.

0.11.2 (2012-04-22)

	Attempt to use the OS’s certificate bundle if certifi isn’t available.

	Infinite digest auth redirect fix.

	Multi-part file upload improvements.

	Fix decoding of invalid %encodings in URLs.

	If there is no content in a response don’t throw an error the second time that content is attempted to be read.

	Upload data on redirects.

0.11.1 (2012-03-30)

	POST redirects now break RFC to do what browsers do: Follow up with a GET.

	New strict_mode configuration to disable new redirect behavior.

0.11.0 (2012-03-14)

	Private SSL Certificate support

	Remove select.poll from Gevent monkeypatching

	Remove redundant generator for chunked transfer encoding

	Fix: Response.ok raises Timeout Exception in safe_mode

0.10.8 (2012-03-09)

	Generate chunked ValueError fix

	Proxy configuration by environment variables

	Simplification of iter_lines.

	New trust_env configuration for disabling system/environment hints.

	Suppress cookie errors.

0.10.7 (2012-03-07)

	encode_uri = False

0.10.6 (2012-02-25)

	Allow «=» in cookies.

0.10.5 (2012-02-25)

	Response body with 0 content-length fix.

	New async.imap.

	Don’t fail on netrc.

0.10.4 (2012-02-20)

	Honor netrc.

0.10.3 (2012-02-20)

	HEAD requests don’t follow redirects anymore.

	raise_for_status() doesn’t raise for 3xx anymore.

	Make Session objects picklable.

	ValueError for invalid schema URLs.

0.10.2 (2012-01-15)

	Vastly improved URL quoting.

	Additional allowed cookie key values.

	Attempted fix for „Too many open files” Error

	Replace unicode errors on first pass, no need for second pass.

	Append «/» to bare-domain urls before query insertion.

	Exceptions now inherit from RuntimeError.

	Binary uploads + auth fix.

	Bugfixes.

0.10.1 (2012-01-23)

	PYTHON 3 SUPPORT!

	Dropped 2.5 Support. (Backwards Incompatible)

0.10.0 (2012-01-21)

	Response.content is now bytes-only. (Backwards Incompatible)

	New Response.text is unicode-only.

	If no Response.encoding is specified and chardet is available, Response.text will guess an encoding.

	Default to ISO-8859-1 (Western) encoding for „text” subtypes.

	Removal of decode_unicode. (Backwards Incompatible)

	New multiple-hooks system.

	New Response.register_hook for registering hooks within the pipeline.

	Response.url is now Unicode.

0.9.3 (2012-01-18)

	SSL verify=False bugfix (apparent on windows machines).

0.9.2 (2012-01-18)

	Asynchronous async.send method.

	Support for proper chunk streams with boundaries.

	session argument for Session classes.

	Print entire hook tracebacks, not just exception instance.

	Fix response.iter_lines from pending next line.

	Fix but in HTTP-digest auth w/ URI having query strings.

	Fix in Event Hooks section.

	Urllib3 update.

0.9.1 (2012-01-06)

	danger_mode for automatic Response.raise_for_status()

	Response.iter_lines refactor

0.9.0 (2011-12-28)

	verify ssl is default.

0.8.9 (2011-12-28)

	Packaging fix.

0.8.8 (2011-12-28)

	SSL CERT VERIFICATION!

	Release of Cerifi: Mozilla’s cert list.

	New «verify» argument for SSL requests.

	Urllib3 update.

0.8.7 (2011-12-24)

	iter_lines last-line truncation fix

	Force safe_mode for async requests

	Handle safe_mode exceptions more consistently

	Fix iteration on null responses in safe_mode

0.8.6 (2011-12-18)

	Socket timeout fixes.

	Proxy Authorization support.

0.8.5 (2011-12-14)

	Response.iter_lines!

0.8.4 (2011-12-11)

	Prefetch bugfix.

	Added license to installed version.

0.8.3 (2011-11-27)

	Converted auth system to use simpler callable objects.

	New session parameter to API methods.

	Display full URL while logging.

0.8.2 (2011-11-19)

	New Unicode decoding system, based on over-ridable Response.encoding.

	Proper URL slash-quote handling.

	Cookies with [,], and _ allowed.

0.8.1 (2011-11-15)

	URL Request path fix

	Proxy fix.

	Timeouts fix.

0.8.0 (2011-11-13)

	Keep-alive support!

	Complete removal of Urllib2

	Complete removal of Poster

	Complete removal of CookieJars

	New ConnectionError raising

	Safe_mode for error catching

	prefetch parameter for request methods

	OPTION method

	Async pool size throttling

	File uploads send real names

	Vendored in urllib3

0.7.6 (2011-11-07)

	Digest authentication bugfix (attach query data to path)

0.7.5 (2011-11-04)

	Response.content = None if there was an invalid response.

	Redirection auth handling.

0.7.4 (2011-10-26)

	Session Hooks fix.

0.7.3 (2011-10-23)

	Digest Auth fix.

0.7.2 (2011-10-23)

	PATCH Fix.

0.7.1 (2011-10-23)

	Move away from urllib2 authentication handling.

	Fully Remove AuthManager, AuthObject, &c.

	New tuple-based auth system with handler callbacks.

0.7.0 (2011-10-22)

	Sessions are now the primary interface.

	Deprecated InvalidMethodException.

	PATCH fix.

	New config system (no more global settings).

0.6.6 (2011-10-19)

	Session parameter bugfix (params merging).

0.6.5 (2011-10-18)

	Offline (fast) test suite.

	Session dictionary argument merging.

0.6.4 (2011-10-13)

	Automatic decoding of unicode, based on HTTP Headers.

	New decode_unicode setting.

	Removal of r.read/close methods.

	New r.faw interface for advanced response usage.*

	Automatic expansion of parameterized headers.

0.6.3 (2011-10-13)

	Beautiful requests.async module, for making async requests w/ gevent.

0.6.2 (2011-10-09)

	GET/HEAD obeys allow_redirects=False.

0.6.1 (2011-08-20)

	Enhanced status codes experience \o/

	Set a maximum number of redirects (settings.max_redirects)

	Full Unicode URL support

	Support for protocol-less redirects.

	Allow for arbitrary request types.

	Bugfixes

0.6.0 (2011-08-17)

	New callback hook system

	New persistent sessions object and context manager

	Transparent Dict-cookie handling

	Status code reference object

	Removed Response.cached

	Added Response.request

	All args are kwargs

	Relative redirect support

	HTTPError handling improvements

	Improved https testing

	Bugfixes

0.5.1 (2011-07-23)

	International Domain Name Support!

	Access headers without fetching entire body (read())

	Use lists as dicts for parameters

	Add Forced Basic Authentication

	Forced Basic is default authentication type

	python-requests.org default User-Agent header

	CaseInsensitiveDict lower-case caching

	Response.history bugfix

0.5.0 (2011-06-21)

	PATCH Support

	Support for Proxies

	HTTPBin Test Suite

	Redirect Fixes

	settings.verbose stream writing

	Querystrings for all methods

	URLErrors (Connection Refused, Timeout, Invalid URLs) are treated as explicitly raised
r.requests.get('hwe://blah'); r.raise_for_status()

0.4.1 (2011-05-22)

	Improved Redirection Handling

	New «allow_redirects» param for following non-GET/HEAD Redirects

	Settings module refactoring

0.4.0 (2011-05-15)

	Response.history: list of redirected responses

	Case-Insensitive Header Dictionaries!

	Unicode URLs

0.3.4 (2011-05-14)

	Urllib2 HTTPAuthentication Recursion fix (Basic/Digest)

	Internal Refactor

	Bytes data upload Bugfix

0.3.3 (2011-05-12)

	Request timeouts

	Unicode url-encoded data

	Settings context manager and module

0.3.2 (2011-04-15)

	Automatic Decompression of GZip Encoded Content

	AutoAuth Support for Tupled HTTP Auth

0.3.1 (2011-04-01)

	Cookie Changes

	Response.read()

	Poster fix

0.3.0 (2011-02-25)

	Automatic Authentication API Change

	Smarter Query URL Parameterization

	Allow file uploads and POST data together

	
	New Authentication Manager System

	
	Simpler Basic HTTP System

	Supports all build-in urllib2 Auths

	Allows for custom Auth Handlers

0.2.4 (2011-02-19)

	Python 2.5 Support

	PyPy-c v1.4 Support

	Auto-Authentication tests

	Improved Request object constructor

0.2.3 (2011-02-15)

	
	New HTTPHandling Methods

	
	Response.__nonzero__ (false if bad HTTP Status)

	Response.ok (True if expected HTTP Status)

	Response.error (Logged HTTPError if bad HTTP Status)

	Response.raise_for_status() (Raises stored HTTPError)

0.2.2 (2011-02-14)

	Still handles request in the event of an HTTPError. (Issue #2)

	Eventlet and Gevent Monkeypatch support.

	Cookie Support (Issue #1)

0.2.1 (2011-02-14)

	Added file attribute to POST and PUT requests for multipart-encode file uploads.

	Added Request.url attribute for context and redirects

0.2.0 (2011-02-14)

	Birth!

0.0.1 (2011-02-13)

	Frustration

	Conception

 [image: ../../../../../_images/six.svg]
 [https://pypi.python.org/pypi/six][image: ../../../../../_images/six1.svg]
 [https://travis-ci.org/benjaminp/six][image: ../../../../../_images/license-MIT-green.svg]
 [https://github.com/benjaminp/six/blob/master/LICENSE]Six is a Python 2 and 3 compatibility library. It provides utility functions
for smoothing over the differences between the Python versions with the goal of
writing Python code that is compatible on both Python versions. See the
documentation for more information on what is provided.

Six supports every Python version since 2.6. It is contained in only one Python
file, so it can be easily copied into your project. (The copyright and license
notice must be retained.)

Online documentation is at http://six.rtfd.org.

Bugs can be reported to https://github.com/benjaminp/six. The code can also
be found there.

For questions about six or porting in general, email the python-porting mailing
list: https://mail.python.org/mailman/listinfo/python-porting

 It includes following language algorithms:

	Danish

	Dutch

	English (Standard, Porter)

	Finnish

	French

	German

	Hungarian

	Italian

	Norwegian

	Portuguese

	Romanian

	Russian

	Spanish

	Swedish

	Turkish

This is a pure Python stemming library. If PyStemmer [http://pypi.python.org/pypi/PyStemmer] is available, this module uses
it to accelerate.

 {{ fullname | escape | underline}}

 {{ fullname | escape | underline}}

 {{ fullname | escape | underline}}

 Typing – Type Hints for Python

This is a backport of the standard library typing module to Python
versions older than 3.5. (See note below for newer versions.)

Typing defines a standard notation for Python function and variable
type annotations. The notation can be used for documenting code in a
concise, standard format, and it has been designed to also be used by
static and runtime type checkers, static analyzers, IDEs and other
tools.

NOTE: in Python 3.5 and later, the typing module lives in the stdlib,
and installing this package has NO EFFECT. To get a newer version of
the typing module in Python 3.5 or later, you have to upgrade to a
newer Python (bugfix) version. For example, typing in Python 3.6.0 is
missing the definition of «Type» – upgrading to 3.6.2 will fix this.

Also note that most improvements to the typing module in Python 3.7
will not be included in this package, since Python 3.7 has some
built-in support that is not present in older versions (See PEP 560.)

urllib3

[image: Build status on Travis]
 [https://travis-ci.org/urllib3/urllib3][image: Build status on AppVeyor]
 [https://ci.appveyor.com/project/urllib3/urllib3][image: Documentation Status]
 [https://urllib3.readthedocs.io/en/latest/][image: Coverage Status]
 [https://codecov.io/gh/urllib3/urllib3][image: PyPI version]
 [https://pypi.org/project/urllib3/][image: Bountysource]
 [https://www.bountysource.com/trackers/192525-urllib3?utm_source=192525&utm_medium=shield&utm_campaign=TRACKER_BADGE][image: Gitter]
 [https://gitter.im/python-urllib3/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]urllib3 is a powerful, sanity-friendly HTTP client for Python. Much of the
Python ecosystem already uses urllib3 and you should too.
urllib3 brings many critical features that are missing from the Python
standard libraries:

	Thread safety.

	Connection pooling.

	Client-side SSL/TLS verification.

	File uploads with multipart encoding.

	Helpers for retrying requests and dealing with HTTP redirects.

	Support for gzip and deflate encoding.

	Proxy support for HTTP and SOCKS.

	100% test coverage.

urllib3 is powerful and easy to use:

>>> import urllib3
>>> http = urllib3.PoolManager()
>>> r = http.request('GET', 'http://httpbin.org/robots.txt')
>>> r.status
200
>>> r.data
'User-agent: *\nDisallow: /deny\n'

Installing

urllib3 can be installed with pip [https://pip.pypa.io]:

$ pip install urllib3

Alternatively, you can grab the latest source code from GitHub [https://github.com/urllib3/urllib3]:

$ git clone git://github.com/urllib3/urllib3.git
$ python setup.py install

Documentation

urllib3 has usage and reference documentation at urllib3.readthedocs.io [https://urllib3.readthedocs.io].

Contributing

urllib3 happily accepts contributions. Please see our
contributing documentation [https://urllib3.readthedocs.io/en/latest/contributing.html]
for some tips on getting started.

Maintainers

	@theacodes [https://github.com/theacodes] (Thea Flowers)

	@SethMichaelLarson [https://github.com/SethMichaelLarson] (Seth M. Larson)

	@haikuginger [https://github.com/haikuginger] (Jesse Shapiro)

	@lukasa [https://github.com/lukasa] (Cory Benfield)

	@sigmavirus24 [https://github.com/sigmavirus24] (Ian Cordasco)

	@shazow [https://github.com/shazow] (Andrey Petrov)

👋

Sponsorship

If your company benefits from this library, please consider sponsoring its
development [https://urllib3.readthedocs.io/en/latest/contributing.html#sponsorship].

Sponsors include:

	Google Cloud Platform (2018-present), sponsors @theacodes [https://github.com/theacodes]’s work on an ongoing basis

	Abbott (2018-present), sponsors @SethMichaelLarson [https://github.com/SethMichaelLarson]’s work on an ongoing basis

	Akamai (2017-present), sponsors @haikuginger [https://github.com/haikuginger]’s work on an ongoing basis

	Hewlett Packard Enterprise (2016-2017), sponsored @Lukasa’s [https://github.com/Lukasa] work on urllib3

Changes

1.23 (2018-06-04)

	Allow providing a list of headers to strip from requests when redirecting
to a different host. Defaults to the Authorization header. Different
headers can be set via Retry.remove_headers_on_redirect. (Issue #1316)

	Fix util.selectors._fileobj_to_fd to accept long (Issue #1247).

	Dropped Python 3.3 support. (Pull #1242)

	Put the connection back in the pool when calling stream() or read_chunked() on
a chunked HEAD response. (Issue #1234)

	Fixed pyOpenSSL-specific ssl client authentication issue when clients
attempted to auth via certificate + chain (Issue #1060)

	Add the port to the connectionpool connect print (Pull #1251)

	Don’t use the uuid module to create multipart data boundaries. (Pull #1380)

	read_chunked() on a closed response returns no chunks. (Issue #1088)

	Add Python 2.6 support to contrib.securetransport (Pull #1359)

	Added support for auth info in url for SOCKS proxy (Pull #1363)

1.22 (2017-07-20)

	Fixed missing brackets in HTTP CONNECT when connecting to IPv6 address via
IPv6 proxy. (Issue #1222)

	Made the connection pool retry on SSLError. The original SSLError
is available on MaxRetryError.reason. (Issue #1112)

	Drain and release connection before recursing on retry/redirect. Fixes
deadlocks with a blocking connectionpool. (Issue #1167)

	Fixed compatibility for cookiejar. (Issue #1229)

	pyopenssl: Use vendored version of six. (Issue #1231)

1.21.1 (2017-05-02)

	Fixed SecureTransport issue that would cause long delays in response body
delivery. (Pull #1154)

	Fixed regression in 1.21 that threw exceptions when users passed the
socket_options flag to the PoolManager. (Issue #1165)

	Fixed regression in 1.21 that threw exceptions when users passed the
assert_hostname or assert_fingerprint flag to the PoolManager.
(Pull #1157)

1.21 (2017-04-25)

	Improved performance of certain selector system calls on Python 3.5 and
later. (Pull #1095)

	Resolved issue where the PyOpenSSL backend would not wrap SysCallError
exceptions appropriately when sending data. (Pull #1125)

	Selectors now detects a monkey-patched select module after import for modules
that patch the select module like eventlet, greenlet. (Pull #1128)

	Reduced memory consumption when streaming zlib-compressed responses
(as opposed to raw deflate streams). (Pull #1129)

	Connection pools now use the entire request context when constructing the
pool key. (Pull #1016)

	PoolManager.connection_from_* methods now accept a new keyword argument,
pool_kwargs, which are merged with the existing connection_pool_kw.
(Pull #1016)

	Add retry counter for status_forcelist. (Issue #1147)

	Added contrib module for using SecureTransport on macOS:
urllib3.contrib.securetransport. (Pull #1122)

	urllib3 now only normalizes the case of http:// and https:// schemes:
for schemes it does not recognise, it assumes they are case-sensitive and
leaves them unchanged.
(Issue #1080)

1.20 (2017-01-19)

	Added support for waiting for I/O using selectors other than select,
improving urllib3’s behaviour with large numbers of concurrent connections.
(Pull #1001)

	Updated the date for the system clock check. (Issue #1005)

	ConnectionPools now correctly consider hostnames to be case-insensitive.
(Issue #1032)

	Outdated versions of PyOpenSSL now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Pull #1063)

	Outdated versions of cryptography now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Issue #1044)

	Automatically attempt to rewind a file-like body object when a request is
retried or redirected. (Pull #1039)

	Fix some bugs that occur when modules incautiously patch the queue module.
(Pull #1061)

	Prevent retries from occurring on read timeouts for which the request method
was not in the method whitelist. (Issue #1059)

	Changed the PyOpenSSL contrib module to lazily load idna to avoid
unnecessarily bloating the memory of programs that don’t need it. (Pull
#1076)

	Add support for IPv6 literals with zone identifiers. (Pull #1013)

	Added support for socks5h:// and socks4a:// schemes when working with SOCKS
proxies, and controlled remote DNS appropriately. (Issue #1035)

1.19.1 (2016-11-16)

	Fixed AppEngine import that didn’t function on Python 3.5. (Pull #1025)

1.19 (2016-11-03)

	urllib3 now respects Retry-After headers on 413, 429, and 503 responses when
using the default retry logic. (Pull #955)

	Remove markers from setup.py to assist ancient setuptools versions. (Issue
#986)

	Disallow superscripts and other integerish things in URL ports. (Issue #989)

	Allow urllib3’s HTTPResponse.stream() method to continue to work with
non-httplib underlying FPs. (Pull #990)

	Empty filenames in multipart headers are now emitted as such, rather than
being suppressed. (Issue #1015)

	Prefer user-supplied Host headers on chunked uploads. (Issue #1009)

1.18.1 (2016-10-27)

	CVE-2016-9015. Users who are using urllib3 version 1.17 or 1.18 along with
PyOpenSSL injection and OpenSSL 1.1.0 must upgrade to this version. This
release fixes a vulnerability whereby urllib3 in the above configuration
would silently fail to validate TLS certificates due to erroneously setting
invalid flags in OpenSSL’s SSL_CTX_set_verify function. These erroneous
flags do not cause a problem in OpenSSL versions before 1.1.0, which
interprets the presence of any flag as requesting certificate validation.

There is no PR for this patch, as it was prepared for simultaneous disclosure
and release. The master branch received the same fix in PR #1010.

1.18 (2016-09-26)

	Fixed incorrect message for IncompleteRead exception. (PR #973)

	Accept iPAddress subject alternative name fields in TLS certificates.
(Issue #258)

	Fixed consistency of HTTPResponse.closed between Python 2 and 3.
(Issue #977)

	Fixed handling of wildcard certificates when using PyOpenSSL. (Issue #979)

1.17 (2016-09-06)

	Accept SSLContext objects for use in SSL/TLS negotiation. (Issue #835)

	ConnectionPool debug log now includes scheme, host, and port. (Issue #897)

	Substantially refactored documentation. (Issue #887)

	Used URLFetch default timeout on AppEngine, rather than hardcoding our own.
(Issue #858)

	Normalize the scheme and host in the URL parser (Issue #833)

	HTTPResponse contains the last Retry object, which now also
contains retries history. (Issue #848)

	Timeout can no longer be set as boolean, and must be greater than zero.
(PR #924)

	Removed pyasn1 and ndg-httpsclient from dependencies used for PyOpenSSL. We
now use cryptography and idna, both of which are already dependencies of
PyOpenSSL. (PR #930)

	Fixed infinite loop in stream when amt=None. (Issue #928)

	Try to use the operating system’s certificates when we are using an
SSLContext. (PR #941)

	Updated cipher suite list to allow ChaCha20+Poly1305. AES-GCM is preferred to
ChaCha20, but ChaCha20 is then preferred to everything else. (PR #947)

	Updated cipher suite list to remove 3DES-based cipher suites. (PR #958)

	Removed the cipher suite fallback to allow HIGH ciphers. (PR #958)

	Implemented length_remaining to determine remaining content
to be read. (PR #949)

	Implemented enforce_content_length to enable exceptions when
incomplete data chunks are received. (PR #949)

	Dropped connection start, dropped connection reset, redirect, forced retry,
and new HTTPS connection log levels to DEBUG, from INFO. (PR #967)

1.16 (2016-06-11)

	Disable IPv6 DNS when IPv6 connections are not possible. (Issue #840)

	Provide key_fn_by_scheme pool keying mechanism that can be
overridden. (Issue #830)

	Normalize scheme and host to lowercase for pool keys, and include
source_address. (Issue #830)

	Cleaner exception chain in Python 3 for _make_request.
(Issue #861)

	Fixed installing urllib3[socks] extra. (Issue #864)

	Fixed signature of ConnectionPool.close so it can actually safely be
called by subclasses. (Issue #873)

	Retain release_conn state across retries. (Issues #651, #866)

	Add customizable HTTPConnectionPool.ResponseCls, which defaults to
HTTPResponse but can be replaced with a subclass. (Issue #879)

1.15.1 (2016-04-11)

	Fix packaging to include backports module. (Issue #841)

1.15 (2016-04-06)

	Added Retry(raise_on_status=False). (Issue #720)

	Always use setuptools, no more distutils fallback. (Issue #785)

	Dropped support for Python 3.2. (Issue #786)

	Chunked transfer encoding when requesting with chunked=True.
(Issue #790)

	Fixed regression with IPv6 port parsing. (Issue #801)

	Append SNIMissingWarning messages to allow users to specify it in
the PYTHONWARNINGS environment variable. (Issue #816)

	Handle unicode headers in Py2. (Issue #818)

	Log certificate when there is a hostname mismatch. (Issue #820)

	Preserve order of request/response headers. (Issue #821)

1.14 (2015-12-29)

	contrib: SOCKS proxy support! (Issue #762)

	Fixed AppEngine handling of transfer-encoding header and bug
in Timeout defaults checking. (Issue #763)

1.13.1 (2015-12-18)

	Fixed regression in IPv6 + SSL for match_hostname. (Issue #761)

1.13 (2015-12-14)

	Fixed pip install urllib3[secure] on modern pip. (Issue #706)

	pyopenssl: Fixed SSL3_WRITE_PENDING error. (Issue #717)

	pyopenssl: Support for TLSv1.1 and TLSv1.2. (Issue #696)

	Close connections more defensively on exception. (Issue #734)

	Adjusted read_chunked to handle gzipped, chunk-encoded bodies without
repeatedly flushing the decoder, to function better on Jython. (Issue #743)

	Accept ca_cert_dir for SSL-related PoolManager configuration. (Issue #758)

1.12 (2015-09-03)

	Rely on six for importing httplib to work around
conflicts with other Python 3 shims. (Issue #688)

	Add support for directories of certificate authorities, as supported by
OpenSSL. (Issue #701)

	New exception: NewConnectionError, raised when we fail to establish
a new connection, usually ECONNREFUSED socket error.

1.11 (2015-07-21)

	When ca_certs is given, cert_reqs defaults to
'CERT_REQUIRED'. (Issue #650)

	pip install urllib3[secure] will install Certifi and
PyOpenSSL as dependencies. (Issue #678)

	Made HTTPHeaderDict usable as a headers input value
(Issues #632, #679)

	Added urllib3.contrib.appengine [https://urllib3.readthedocs.io/en/latest/contrib.html#google-app-engine]
which has an AppEngineManager for using URLFetch in a
Google AppEngine environment. (Issue #664)

	Dev: Added test suite for AppEngine. (Issue #631)

	Fix performance regression when using PyOpenSSL. (Issue #626)

	Passing incorrect scheme (e.g. foo://) will raise
ValueError instead of AssertionError (backwards
compatible for now, but please migrate). (Issue #640)

	Fix pools not getting replenished when an error occurs during a
request using release_conn=False. (Issue #644)

	Fix pool-default headers not applying for url-encoded requests
like GET. (Issue #657)

	log.warning in Python 3 when headers are skipped due to parsing
errors. (Issue #642)

	Close and discard connections if an error occurs during read.
(Issue #660)

	Fix host parsing for IPv6 proxies. (Issue #668)

	Separate warning type SubjectAltNameWarning, now issued once
per host. (Issue #671)

	Fix httplib.IncompleteRead not getting converted to
ProtocolError when using HTTPResponse.stream()
(Issue #674)

1.10.4 (2015-05-03)

	Migrate tests to Tornado 4. (Issue #594)

	Append default warning configuration rather than overwrite.
(Issue #603)

	Fix streaming decoding regression. (Issue #595)

	Fix chunked requests losing state across keep-alive connections.
(Issue #599)

	Fix hanging when chunked HEAD response has no body. (Issue #605)

1.10.3 (2015-04-21)

	Emit InsecurePlatformWarning when SSLContext object is missing.
(Issue #558)

	Fix regression of duplicate header keys being discarded.
(Issue #563)

	Response.stream() returns a generator for chunked responses.
(Issue #560)

	Set upper-bound timeout when waiting for a socket in PyOpenSSL.
(Issue #585)

	Work on platforms without ssl module for plain HTTP requests.
(Issue #587)

	Stop relying on the stdlib’s default cipher list. (Issue #588)

1.10.2 (2015-02-25)

	Fix file descriptor leakage on retries. (Issue #548)

	Removed RC4 from default cipher list. (Issue #551)

	Header performance improvements. (Issue #544)

	Fix PoolManager not obeying redirect retry settings. (Issue #553)

1.10.1 (2015-02-10)

	Pools can be used as context managers. (Issue #545)

	Don’t re-use connections which experienced an SSLError. (Issue #529)

	Don’t fail when gzip decoding an empty stream. (Issue #535)

	Add sha256 support for fingerprint verification. (Issue #540)

	Fixed handling of header values containing commas. (Issue #533)

1.10 (2014-12-14)

	Disabled SSLv3. (Issue #473)

	Add Url.url property to return the composed url string. (Issue #394)

	Fixed PyOpenSSL + gevent WantWriteError. (Issue #412)

	MaxRetryError.reason will always be an exception, not string.
(Issue #481)

	Fixed SSL-related timeouts not being detected as timeouts. (Issue #492)

	Py3: Use ssl.create_default_context() when available. (Issue #473)

	Emit InsecureRequestWarning for every insecure HTTPS request.
(Issue #496)

	Emit SecurityWarning when certificate has no subjectAltName.
(Issue #499)

	Close and discard sockets which experienced SSL-related errors.
(Issue #501)

	Handle body param in .request(...). (Issue #513)

	Respect timeout with HTTPS proxy. (Issue #505)

	PyOpenSSL: Handle ZeroReturnError exception. (Issue #520)

1.9.1 (2014-09-13)

	Apply socket arguments before binding. (Issue #427)

	More careful checks if fp-like object is closed. (Issue #435)

	Fixed packaging issues of some development-related files not
getting included. (Issue #440)

	Allow performing only fingerprint verification. (Issue #444)

	Emit SecurityWarning if system clock is waaay off. (Issue #445)

	Fixed PyOpenSSL compatibility with PyPy. (Issue #450)

	Fixed BrokenPipeError and ConnectionError handling in Py3.
(Issue #443)

1.9 (2014-07-04)

	Shuffled around development-related files. If you’re maintaining a distro
package of urllib3, you may need to tweak things. (Issue #415)

	Unverified HTTPS requests will trigger a warning on the first request. See
our new security documentation [https://urllib3.readthedocs.io/en/latest/security.html] for details.
(Issue #426)

	New retry logic and urllib3.util.retry.Retry configuration object.
(Issue #326)

	All raised exceptions should now wrapped in a
urllib3.exceptions.HTTPException-extending exception. (Issue #326)

	All errors during a retry-enabled request should be wrapped in
urllib3.exceptions.MaxRetryError, including timeout-related exceptions
which were previously exempt. Underlying error is accessible from the
.reason property. (Issue #326)

	urllib3.exceptions.ConnectionError renamed to
urllib3.exceptions.ProtocolError. (Issue #326)

	Errors during response read (such as IncompleteRead) are now wrapped in
urllib3.exceptions.ProtocolError. (Issue #418)

	Requesting an empty host will raise urllib3.exceptions.LocationValueError.
(Issue #417)

	Catch read timeouts over SSL connections as
urllib3.exceptions.ReadTimeoutError. (Issue #419)

	Apply socket arguments before connecting. (Issue #427)

1.8.3 (2014-06-23)

	Fix TLS verification when using a proxy in Python 3.4.1. (Issue #385)

	Add disable_cache option to urllib3.util.make_headers. (Issue #393)

	Wrap socket.timeout exception with
urllib3.exceptions.ReadTimeoutError. (Issue #399)

	Fixed proxy-related bug where connections were being reused incorrectly.
(Issues #366, #369)

	Added socket_options keyword parameter which allows to define
setsockopt configuration of new sockets. (Issue #397)

	Removed HTTPConnection.tcp_nodelay in favor of
HTTPConnection.default_socket_options. (Issue #397)

	Fixed TypeError bug in Python 2.6.4. (Issue #411)

1.8.2 (2014-04-17)

	Fix urllib3.util not being included in the package.

1.8.1 (2014-04-17)

	Fix AppEngine bug of HTTPS requests going out as HTTP. (Issue #356)

	Don’t install dummyserver into site-packages as it’s only needed
for the test suite. (Issue #362)

	Added support for specifying source_address. (Issue #352)

1.8 (2014-03-04)

	Improved url parsing in urllib3.util.parse_url (properly parse «@» in
username, and blank ports like «hostname:»).

	New urllib3.connection module which contains all the HTTPConnection
objects.

	Several urllib3.util.Timeout-related fixes. Also changed constructor
signature to a more sensible order. [Backwards incompatible]
(Issues #252, #262, #263)

	Use backports.ssl_match_hostname if it’s installed. (Issue #274)

	Added .tell() method to urllib3.response.HTTPResponse which
returns the number of bytes read so far. (Issue #277)

	Support for platforms without threading. (Issue #289)

	Expand default-port comparison in HTTPConnectionPool.is_same_host
to allow a pool with no specified port to be considered equal to to an
HTTP/HTTPS url with port 80/443 explicitly provided. (Issue #305)

	Improved default SSL/TLS settings to avoid vulnerabilities.
(Issue #309)

	Fixed urllib3.poolmanager.ProxyManager not retrying on connect errors.
(Issue #310)

	Disable Nagle’s Algorithm on the socket for non-proxies. A subset of requests
will send the entire HTTP request ~200 milliseconds faster; however, some of
the resulting TCP packets will be smaller. (Issue #254)

	Increased maximum number of SubjectAltNames in urllib3.contrib.pyopenssl
from the default 64 to 1024 in a single certificate. (Issue #318)

	Headers are now passed and stored as a custom
urllib3.collections_.HTTPHeaderDict object rather than a plain dict.
(Issue #329, #333)

	Headers no longer lose their case on Python 3. (Issue #236)

	urllib3.contrib.pyopenssl now uses the operating system’s default CA
certificates on inject. (Issue #332)

	Requests with retries=False will immediately raise any exceptions without
wrapping them in MaxRetryError. (Issue #348)

	Fixed open socket leak with SSL-related failures. (Issue #344, #348)

1.7.1 (2013-09-25)

	Added granular timeout support with new urllib3.util.Timeout class.
(Issue #231)

	Fixed Python 3.4 support. (Issue #238)

1.7 (2013-08-14)

	More exceptions are now pickle-able, with tests. (Issue #174)

	Fixed redirecting with relative URLs in Location header. (Issue #178)

	Support for relative urls in Location: ... header. (Issue #179)

	urllib3.response.HTTPResponse now inherits from io.IOBase for bonus
file-like functionality. (Issue #187)

	Passing assert_hostname=False when creating a HTTPSConnectionPool will
skip hostname verification for SSL connections. (Issue #194)

	New method urllib3.response.HTTPResponse.stream(...) which acts as a
generator wrapped around .read(...). (Issue #198)

	IPv6 url parsing enforces brackets around the hostname. (Issue #199)

	Fixed thread race condition in
urllib3.poolmanager.PoolManager.connection_from_host(...) (Issue #204)

	ProxyManager requests now include non-default port in Host: ...
header. (Issue #217)

	Added HTTPS proxy support in ProxyManager. (Issue #170 #139)

	New RequestField object can be passed to the fields=... param which
can specify headers. (Issue #220)

	Raise urllib3.exceptions.ProxyError when connecting to proxy fails.
(Issue #221)

	Use international headers when posting file names. (Issue #119)

	Improved IPv6 support. (Issue #203)

1.6 (2013-04-25)

	Contrib: Optional SNI support for Py2 using PyOpenSSL. (Issue #156)

	ProxyManager automatically adds Host: ... header if not given.

	Improved SSL-related code. cert_req now optionally takes a string like
„REQUIRED” or „NONE”. Same with ssl_version takes strings like „SSLv23”
The string values reflect the suffix of the respective constant variable.
(Issue #130)

	Vendored socksipy now based on Anorov’s fork which handles unexpectedly
closed proxy connections and larger read buffers. (Issue #135)

	Ensure the connection is closed if no data is received, fixes connection leak
on some platforms. (Issue #133)

	Added SNI support for SSL/TLS connections on Py32+. (Issue #89)

	Tests fixed to be compatible with Py26 again. (Issue #125)

	Added ability to choose SSL version by passing an ssl.PROTOCOL_* constant
to the ssl_version parameter of HTTPSConnectionPool. (Issue #109)

	Allow an explicit content type to be specified when encoding file fields.
(Issue #126)

	Exceptions are now pickleable, with tests. (Issue #101)

	Fixed default headers not getting passed in some cases. (Issue #99)

	Treat „content-encoding” header value as case-insensitive, per RFC 2616
Section 3.5. (Issue #110)

	„Connection Refused” SocketErrors will get retried rather than raised.
(Issue #92)

	Updated vendored six, no longer overrides the global six module
namespace. (Issue #113)

	urllib3.exceptions.MaxRetryError contains a reason property holding
the exception that prompted the final retry. If reason is None then it
was due to a redirect. (Issue #92, #114)

	Fixed PoolManager.urlopen() from not redirecting more than once.
(Issue #149)

	Don’t assume Content-Type: text/plain for multi-part encoding parameters
that are not files. (Issue #111)

	Pass strict param down to httplib.HTTPConnection. (Issue #122)

	Added mechanism to verify SSL certificates by fingerprint (md5, sha1) or
against an arbitrary hostname (when connecting by IP or for misconfigured
servers). (Issue #140)

	Streaming decompression support. (Issue #159)

1.5 (2012-08-02)

	Added urllib3.add_stderr_logger() for quickly enabling STDERR debug
logging in urllib3.

	Native full URL parsing (including auth, path, query, fragment) available in
urllib3.util.parse_url(url).

	Built-in redirect will switch method to «GET» if status code is 303.
(Issue #11)

	urllib3.PoolManager strips the scheme and host before sending the request
uri. (Issue #8)

	New urllib3.exceptions.DecodeError exception for when automatic decoding,
based on the Content-Type header, fails.

	Fixed bug with pool depletion and leaking connections (Issue #76). Added
explicit connection closing on pool eviction. Added
urllib3.PoolManager.clear().

	99% -> 100% unit test coverage.

1.4 (2012-06-16)

	Minor AppEngine-related fixes.

	Switched from mimetools.choose_boundary to uuid.uuid4().

	Improved url parsing. (Issue #73)

	IPv6 url support. (Issue #72)

1.3 (2012-03-25)

	Removed pre-1.0 deprecated API.

	Refactored helpers into a urllib3.util submodule.

	Fixed multipart encoding to support list-of-tuples for keys with multiple
values. (Issue #48)

	Fixed multiple Set-Cookie headers in response not getting merged properly in
Python 3. (Issue #53)

	AppEngine support with Py27. (Issue #61)

	Minor encode_multipart_formdata fixes related to Python 3 strings vs
bytes.

1.2.2 (2012-02-06)

	Fixed packaging bug of not shipping test-requirements.txt. (Issue #47)

1.2.1 (2012-02-05)

	Fixed another bug related to when ssl module is not available. (Issue #41)

	Location parsing errors now raise urllib3.exceptions.LocationParseError
which inherits from ValueError.

1.2 (2012-01-29)

	Added Python 3 support (tested on 3.2.2)

	Dropped Python 2.5 support (tested on 2.6.7, 2.7.2)

	Use select.poll instead of select.select for platforms that support
it.

	Use Queue.LifoQueue instead of Queue.Queue for more aggressive
connection reusing. Configurable by overriding ConnectionPool.QueueCls.

	Fixed ImportError during install when ssl module is not available.
(Issue #41)

	Fixed PoolManager redirects between schemes (such as HTTP -> HTTPS) not
completing properly. (Issue #28, uncovered by Issue #10 in v1.1)

	Ported dummyserver to use tornado instead of webob +
eventlet. Removed extraneous unsupported dummyserver testing backends.
Added socket-level tests.

	More tests. Achievement Unlocked: 99% Coverage.

1.1 (2012-01-07)

	Refactored dummyserver to its own root namespace module (used for
testing).

	Added hostname verification for VerifiedHTTPSConnection by vendoring in
Py32’s ssl_match_hostname. (Issue #25)

	Fixed cross-host HTTP redirects when using PoolManager. (Issue #10)

	Fixed decode_content being ignored when set through urlopen. (Issue
#27)

	Fixed timeout-related bugs. (Issues #17, #23)

1.0.2 (2011-11-04)

	Fixed typo in VerifiedHTTPSConnection which would only present as a bug if
you’re using the object manually. (Thanks pyos)

	Made RecentlyUsedContainer (and consequently PoolManager) more thread-safe by
wrapping the access log in a mutex. (Thanks @christer)

	Made RecentlyUsedContainer more dict-like (corrected __delitem__ and
__getitem__ behaviour), with tests. Shouldn’t affect core urllib3 code.

1.0.1 (2011-10-10)

	Fixed a bug where the same connection would get returned into the pool twice,
causing extraneous „HttpConnectionPool is full” log warnings.

1.0 (2011-10-08)

	Added PoolManager with LRU expiration of connections (tested and
documented).

	Added ProxyManager (needs tests, docs, and confirmation that it works
with HTTPS proxies).

	Added optional partial-read support for responses when
preload_content=False. You can now make requests and just read the headers
without loading the content.

	Made response decoding optional (default on, same as before).

	Added optional explicit boundary string for encode_multipart_formdata.

	Convenience request methods are now inherited from RequestMethods. Old
helpers like get_url and post_url should be abandoned in favour of
the new request(method, url, ...).

	Refactored code to be even more decoupled, reusable, and extendable.

	License header added to .py files.

	Embiggened the documentation: Lots of Sphinx-friendly docstrings in the code
and docs in docs/ and on https://urllib3.readthedocs.io/.

	Embettered all the things!

	Started writing this file.

0.4.1 (2011-07-17)

	Minor bug fixes, code cleanup.

0.4 (2011-03-01)

	Better unicode support.

	Added VerifiedHTTPSConnection.

	Added NTLMConnectionPool in contrib.

	Minor improvements.

0.3.1 (2010-07-13)

	Added assert_host_name optional parameter. Now compatible with proxies.

0.3 (2009-12-10)

	Added HTTPS support.

	Minor bug fixes.

	Refactored, broken backwards compatibility with 0.2.

	API to be treated as stable from this version forward.

0.2 (2008-11-17)

	Added unit tests.

	Bug fixes.

0.1 (2008-11-16)

	First release.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Wroflats - dokumentacja

_static/minus.png

_static/plus.png

_images/35198386374_1939af3de6_k_d.jpg

_static/up.png

_static/file.png

_images/requests-logo-small.png

